Difference between revisions of "Euler's identity"
m |
m (Minor edit) |
||
Line 9: | Line 9: | ||
<math>(\cos(\theta) + i\sin(\theta))^n = (e^{i\theta})^n = e^{in\theta} = \cos(n\theta) + i\sin(n\theta)</math>. | <math>(\cos(\theta) + i\sin(\theta))^n = (e^{i\theta})^n = e^{in\theta} = \cos(n\theta) + i\sin(n\theta)</math>. | ||
− | ===Sine/Cosine Angle Addition Formulas=== | + | === Sine/Cosine Angle Addition Formulas === |
Start with <math>e^{i(\alpha + \beta)} = (e^{i\alpha})(e^{i\beta})</math>, and apply Euler's forumla both sides: | Start with <math>e^{i(\alpha + \beta)} = (e^{i\alpha})(e^{i\beta})</math>, and apply Euler's forumla both sides: | ||
− | + | <cmath>\cos(\alpha + \beta) + i \sin(\alpha + \beta) = (\cos\alpha + i\sin\alpha)(\cos\beta + i\sin\beta).</cmath> | |
− | < | ||
− | \cos(\alpha + \beta) + i \sin(\alpha + \beta) = (\cos\alpha + i\sin\alpha)(\cos\beta + i\sin\beta).</ | ||
− | |||
Expanding the right side gives | Expanding the right side gives | ||
− | + | <cmath>(\cos\alpha\cos\beta - \sin\alpha\sin\beta) + i(\cos\alpha\sin\beta + \sin\alpha\cos\beta).</cmath> | |
− | < | ||
− | (\cos\alpha\cos\beta - \sin\alpha\sin\beta) + i(\cos\alpha\sin\beta + \sin\alpha\cos\beta). | ||
− | </ | ||
− | |||
Comparing the real and imaginary terms of these expressions gives the sine and cosine angle-addition formulas: | Comparing the real and imaginary terms of these expressions gives the sine and cosine angle-addition formulas: | ||
− | + | <cmath>\cos(\alpha+\beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta</cmath> | |
− | < | + | <cmath>\sin(\alpha+\beta) = \cos\alpha\sin\beta + \sin\alpha\cos\beta</cmath> |
− | \cos(\alpha+\beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta | ||
− | </ | ||
− | |||
− | < | ||
− | \sin(\alpha+\beta) = \cos\alpha\sin\beta + \sin\alpha\cos\beta | ||
− | </ | ||
===Geometry on the complex plane=== | ===Geometry on the complex plane=== | ||
Line 36: | Line 23: | ||
===Other nice properties=== | ===Other nice properties=== | ||
− | A special, and quite fascinating, consequence of Euler's formula is the identity <math>e^{i\pi}+1=0</math>, which relates five of the most fundamental numbers in all of mathematics: [[e]], [[imaginary unit | i]], [[pi]], [[ | + | A special, and quite fascinating, consequence of Euler's formula is the identity <math>e^{i\pi}+1=0</math>, which relates five of the most fundamental numbers in all of mathematics: [[e]], [[imaginary unit|i]], [[pi]], [[0]], and [[1]]. |
==Proof 1== | ==Proof 1== | ||
Line 43: | Line 30: | ||
We have the following Taylor series: | We have the following Taylor series: | ||
− | + | <cmath>e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots=\sum_{k=0}^{\infty}\frac{x^k}{k!}</cmath> | |
− | < | + | <cmath>\sin(x)=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\cdots=\sum_{k=0}^{\infty}(-1)^{k}\frac{x^{2k+1}}{(2k+1)!}</cmath> |
− | + | <cmath>\cos(x)=1-\frac{x^2}{2!}+\frac{x^4}{4!}-\cdots=\sum_{k=0}^{\infty}(-1)^{k}\frac{x^{2k}}{(2k)!}</cmath> | |
− | < | ||
− | |||
− | < | ||
The key step now is to let <math>x=i\theta</math> and plug it into the series for <math>e^x</math>. The result is Euler's formula above. | The key step now is to let <math>x=i\theta</math> and plug it into the series for <math>e^x</math>. The result is Euler's formula above. | ||
Line 54: | Line 38: | ||
==Proof 2== | ==Proof 2== | ||
Define <math>z=\cos{\theta}+i\sin{\theta}</math>. Then <math>\frac{dz}{d\theta}=-\sin{\theta}+i\cos{\theta}=iz</math>, <math>\implies \frac{dz}{z}=id\theta</math> | Define <math>z=\cos{\theta}+i\sin{\theta}</math>. Then <math>\frac{dz}{d\theta}=-\sin{\theta}+i\cos{\theta}=iz</math>, <math>\implies \frac{dz}{z}=id\theta</math> | ||
+ | <cmath>\int \frac{dz}{z}=\int id\theta</cmath> | ||
+ | <cmath>\ln{|z|}=i\theta+c</cmath> | ||
+ | <cmath>z=e^{i\theta+c}<math>; we know </math>z(0)=1<math>, so we get </math>c=0<math>, therefore </math>z=e^{i\theta}=\cos{\theta}+i\sin{\theta}</cmath>. | ||
− | + | == See Also == | |
− | |||
− | |||
− | |||
− | |||
− | |||
*[[Complex numbers]] | *[[Complex numbers]] | ||
*[[Trigonometry]] | *[[Trigonometry]] | ||
Line 68: | Line 50: | ||
[[Category:Complex numbers]] | [[Category:Complex numbers]] | ||
+ | {{stub}} |
Latest revision as of 10:19, 15 February 2025
Euler's Formula is . It is named after the 18th-century mathematician Leonhard Euler.
Contents
Background
Euler's formula is a fundamental tool used when solving problems involving complex numbers and/or trigonometry. Euler's formula replaces "cis", and is a superior notation, as it encapsulates several nice properties:
De Moivre's Theorem
De Moivre's Theorem states that for any real number and integer
,
.
Sine/Cosine Angle Addition Formulas
Start with , and apply Euler's forumla both sides:
Expanding the right side gives
Comparing the real and imaginary terms of these expressions gives the sine and cosine angle-addition formulas:
Geometry on the complex plane
Other nice properties
A special, and quite fascinating, consequence of Euler's formula is the identity , which relates five of the most fundamental numbers in all of mathematics: e, i, pi, 0, and 1.
Proof 1
The proof of Euler's formula can be shown using the technique from calculus known as Taylor series.
We have the following Taylor series:
The key step now is to let and plug it into the series for
. The result is Euler's formula above.
Proof 2
Define . Then
,
.
See Also
This article is a stub. Help us out by expanding it.