Difference between revisions of "2025 AIME I Problems/Problem 2"
m (→Solution 1) |
|||
Line 32: | Line 32: | ||
~ alwaysgonnagiveyouup | ~ alwaysgonnagiveyouup | ||
+ | |||
+ | ==Video Solution 1 by SpreadTheMathLove== | ||
+ | https://www.youtube.com/watch?v=J-0BapU4Yuk | ||
==See also== | ==See also== |
Revision as of 00:55, 14 February 2025
Problem
In points
and
lie on
so that
, while points
and
lie on
so that
. Suppose
,
,
,
,
, and
. Let
be the reflection of
through
, and let
be the reflection of
through
. The area of quadrilateral
is
. Find the area of heptagon
, as shown in the figure below.
Solution 1
Note that the triangles outside have the same height as the unshaded triangles in
. Since they have the same bases, the area of the heptagon is the same as the area of triangle
. Therefore, we need to calculate the area of
. Denote the length of
as
and the altitude of
to
as
. Since
,
and the altitude of
is
. The area
. The area of
is equal to
.
~ alwaysgonnagiveyouup
Video Solution 1 by SpreadTheMathLove
https://www.youtube.com/watch?v=J-0BapU4Yuk
See also
2025 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.