|
|
Line 18: |
Line 18: |
| | | |
| ~Bluesoul | | ~Bluesoul |
− |
| |
− | <math>\forall</math> 2 <math>\le</math> i <math>\le</math> 10, cos\angle <math>A_{i}<cmath>A_{1}</cmath>A_{i+1}</math>=<math>\frac{12}{13} </math>\\
| |
− | So sin\angle <math>A_{i}<cmath>A_{1}</cmath>A_{i+1}</math>=<math>\frac{5}{13} </math>\\
| |
− | Since the area of each triangle is 1,\\
| |
− | <math>\frac{1}{2} </math>\times<cmath>A_{1}</cmath>A_{i}<math>\times</math>A_{1}<math></math>A_{i+1}<math>\times sin</math>\angle A_{i}<cmath>A_{1}</cmath>A_{i+1}<math>=1\\
| |
− | </math>\Rightarrow<math> </math>A_{1}<math></math>A_{i}<math>\times</math>A_{1}<math></math>A_{i+1}<math>= </math>\frac{26}{5} <math>\\
| |
− | So </math>A_{1}<math></math>A_{i}<math>\times</math>A_{1}<math></math>A_{i+1}<math>=</math>A_{1}<math></math>A_{i+1}<math>\times</math>A_{1}<math></math>A_{i+2}<math>\\
| |
− | This means </math>A_{1}<math></math>A_{i}<math>=A_{1}</math><math>A_{i+2}</math>\\
| |
− | In <math>\triangle A_{1}<cmath>A_{i}</cmath>A_{i+1}</math> and <math>\triangle A_{1}<cmath>A_{i+2}</cmath>A_{i+1}</math>,\\
| |
− | they share one of the same side and the angles on vertex <math>A_{1}</math> are the same
| |
− | <math>A_{1}</math><math>A_{i}</math>= <math>A_{1}</math><math>A_{i=2}</math>\\
| |
− | So they are congruent \\
| |
− | This means <math>\forall</math> 2 <math>\le</math> i <math>\le</math> 9 <math>A_{i}</math><math>A_{i+1}</math>= <math>A_{i+1}</math><math>A_{i+2}</math>\\
| |
− | Perimeter = <math>A_{1}</math><math>A_{2}</math>+<math>\sum_{i=2}^{10}A_{i}</math><math>A_{i+1}</math>+<math>A_{11}</math><math>A_{1}</math>=20\\
| |
− | Then <math>A_{1}</math><math>A_{2}</math>+<math>A_{11}</math><math>A_{1}</math>+9<math>A_{2}</math><math>A_{3}</math>=20\\
| |
− | Let us set <math>A_{1}</math><math>A_{2}</math>=a <math>A_{11}</math><math>A_{1}</math>=b and <math>A_{2}</math><math>A_{3}</math>=c\\
| |
− | Then a+b+9c=20\\
| |
− | Now, we apply cosine law in <math>\triangle A_{1}<cmath>A_{2}</cmath>A_{3}</math>\\
| |
− | <math>A_{2}</math><math>A_{3}</math>^{2}=<math>A_{1}</math><math>A_{2}</math>^{2} +<math>A_{1}</math><math>A_{3}</math>^{3}-2<math>A_{1}</math><math>A_{2}</math>\times<math>A_{1}</math><math>A_{3}</math>cos\angle A_{2}<cmath>A_{1}</cmath>A_{3}<math>\\
| |
− | </math>\Rightarrow<math> c^{2}=a^{2}+b^{2}-2ab</math>\times\frac {12}{13} <math>\\
| |
− | Set </math>A_{1}<math></math>A_{2}<math>+</math>A_{11}<math></math>A_{1}<math>=t,\\
| |
− | then c^{2}=(a+b)^{2}-2ab-2ab</math>\times\frac {12}{13}=t^{2}-2\times\frac {26}{5}\times (1+\frac {12}{13})\\
| |
− | <math>\Rightarrow</math> c^{2}=t^{2}- 20 \\
| |
− | Since 9c=20-a-b=20-t\\
| |
− | Square both sides, giving 81c^{2}=400+t^{2}-40t\\
| |
− | <math>\Rightarrow</math> 81t^{2}-20\times81=400+t^{2}-40t\\
| |
− | <math>\Rightarrow</math> 80t^{2}+40t-20\times101\\
| |
− | <math>\Rightarrow</math> 80t^{2}+40t-20\times101\\
| |
− | <math>\Rightarrow</math> 4t^{2}+2t-101\\
| |
− | Soving it, we get t=\frac{9\sqrt{5}-1 }{4} \\
| |
− | So m+n+p+q=1+4+5+9=19 is the correct answer
| |