Difference between revisions of "2025 AIME II Problems/Problem 4"
(→Solution 1) |
(→Solution 1) |
||
Line 7: | Line 7: | ||
= 15/12 * 24/21 * 35/32 * ... * 3968/3965 * \log_4 5 / \log_64 5 | = 15/12 * 24/21 * 35/32 * ... * 3968/3965 * \log_4 5 / \log_64 5 | ||
+ | |||
= \log_4 64 * (4+1)(4-1)(5+1)(5-1)* ... * (63+1)(63-1)/(4+2)(4-2)(5+2)(5-2)* ... * (63+2)(63-2) | = \log_4 64 * (4+1)(4-1)(5+1)(5-1)* ... * (63+1)(63-1)/(4+2)(4-2)(5+2)(5-2)* ... * (63+2)(63-2) | ||
+ | |||
= 3 * 5 * 3 * 6 * 4 * ... * 64 * 62 / 6 * 2 * 7 * 3 * ... * 65 * 61 | = 3 * 5 * 3 * 6 * 4 * ... * 64 * 62 / 6 * 2 * 7 * 3 * ... * 65 * 61 | ||
+ | |||
= 3 * 5 * 62 / 65 * 2 | = 3 * 5 * 62 / 65 * 2 | ||
+ | |||
= 3 * 5 * 2 * 31 / 5 * 13 * 2 | = 3 * 5 * 2 * 31 / 5 * 13 * 2 | ||
+ | |||
= 3 * 31 / 13 | = 3 * 31 / 13 | ||
+ | |||
= 93/13 | = 93/13 | ||
+ | |||
Desired answer: 93 + 13 = 106 | Desired answer: 93 + 13 = 106 | ||
(Feel free to correct any latexes and formats) | (Feel free to correct any latexes and formats) | ||
~Mitsuihisashi14 | ~Mitsuihisashi14 |
Revision as of 22:05, 13 February 2025
Problem
The productis equal to
where
and
are relatively prime positive integers. Find
Solution 1
We can rewrite the equation as:
= 15/12 * 24/21 * 35/32 * ... * 3968/3965 * \log_4 5 / \log_64 5
= \log_4 64 * (4+1)(4-1)(5+1)(5-1)* ... * (63+1)(63-1)/(4+2)(4-2)(5+2)(5-2)* ... * (63+2)(63-2)
= 3 * 5 * 3 * 6 * 4 * ... * 64 * 62 / 6 * 2 * 7 * 3 * ... * 65 * 61
= 3 * 5 * 62 / 65 * 2
= 3 * 5 * 2 * 31 / 5 * 13 * 2
= 3 * 31 / 13
= 93/13
Desired answer: 93 + 13 = 106
(Feel free to correct any latexes and formats) ~Mitsuihisashi14