Difference between revisions of "Quadratic equation"

(fixed exponent)
(fixed LaTeX)
Line 1: Line 1:
 
=== Quadratic Equations ===
 
=== Quadratic Equations ===
  
A quadratic equation is an equation of form <math> ax ^ 2 + bx + c = 0 </math>. a, b, and c are constants, and x is the unknown variable. Quadratic Equations are solved using 3 main strategies, factoring, completing the square, and the quadratic formula.
+
A quadratic equation is an equation of form <math> {a}{x}^2+{b}{x}+{c}=0</math>. a, b, and c are constants, and x is the unknown variable. Quadratic Equations are solved using 3 main strategies, factoring, completing the square, and the quadratic formula.
  
 
=== Factoring ===
 
=== Factoring ===

Revision as of 20:46, 17 June 2006

Quadratic Equations

A quadratic equation is an equation of form ${a}{x}^2+{b}{x}+{c}=0$. a, b, and c are constants, and x is the unknown variable. Quadratic Equations are solved using 3 main strategies, factoring, completing the square, and the quadratic formula.

Factoring

The purpose of factoring is to turn a general quadratic into a product of binomials. This is easier to illustrate than to describle

Example: Solve the equation $x^2-3x+2=0$ for x. Solution: $x^2-3x+2=0$ First we expand the middle term. This is different for all quadratics. We cleverly choose this so that it has common factors. We now have $x^2-x-2x+2=0$ Next, we factor out our common terms to get: $x(x-1)-2(x-1)=0$. We can now factor the (x-1) term to get: $(x-1)(x-2)=0$. By a well know theorem, Either $(x-1)$ or $(x-2)$ equals zero. We now have the pair or equations x-1=0, or x-2=0. These give us answers of x=1 or x-2. Plugging these back into the original equation, we find that both of these work! We are done.

Completing the Square

Completing the Square

Quadratic Formula