Difference between revisions of "2025 AIME I Problems/Problem 10"
Faliure167 (talk | contribs) (Created blank page) |
|||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
+ | The <math>27</math> cells of a <math>3 \times 9</math> grid are filled in using the numbers <math>1</math> through <math>9</math> so that each row contains <math>9</math> different numbers, and each of the three <math>3 \times 3</math> blocks heavily outlined in the example below contains <math>9</math> different numbers, as in the first three rows of a Sudoku puzzle. | ||
+ | |||
+ | <asy> | ||
+ | unitsize(20); | ||
+ | |||
+ | add(grid(9,3)); | ||
+ | |||
+ | draw((0,0)--(9,0)--(9,3)--(0,3)--cycle, linewidth(2)); | ||
+ | draw((3,0)--(3,3), linewidth(2)); draw((6,0)--(6,3), linewidth(2)); | ||
+ | |||
+ | real a = 0.5; | ||
+ | |||
+ | label("5",(a,a)); | ||
+ | label("6",(1+a,a)); | ||
+ | label("1",(2+a,a)); | ||
+ | label("8",(3+a,a)); | ||
+ | label("4",(4+a,a)); | ||
+ | label("7",(5+a,a)); | ||
+ | label("9",(6+a,a)); | ||
+ | label("2",(7+a,a)); | ||
+ | label("3",(8+a,a)); | ||
+ | |||
+ | label("3",(a,1+a)); | ||
+ | label("7",(1+a,1+a)); | ||
+ | label("9",(2+a,1+a)); | ||
+ | label("5",(3+a,1+a)); | ||
+ | label("2",(4+a,1+a)); | ||
+ | label("1",(5+a,1+a)); | ||
+ | label("6",(6+a,1+a)); | ||
+ | label("8",(7+a,1+a)); | ||
+ | label("4",(8+a,1+a)); | ||
+ | |||
+ | label("4",(a,2+a)); | ||
+ | label("2",(1+a,2+a)); | ||
+ | label("8",(2+a,2+a)); | ||
+ | label("9",(3+a,2+a)); | ||
+ | label("6",(4+a,2+a)); | ||
+ | label("3",(5+a,2+a)); | ||
+ | label("1",(6+a,2+a)); | ||
+ | label("7",(7+a,2+a)); | ||
+ | label("5",(8+a,2+a)); | ||
+ | |||
+ | </asy> | ||
+ | |||
+ | The number of different ways to fill such a grid can be written as <math>p^a \cdot q^b \cdot r^c \cdot s^d</math> where <math>p</math>, <math>q</math>, <math>r</math>, and <math>s</math> are distinct prime numbers and <math>a</math>, <math>b</math>, <math>c</math>, <math>d</math> are positive integers. Find <math>p \cdot a + q \cdot b + r \cdot c + s \cdot d</math>. | ||
+ | |||
+ | ==See also== | ||
+ | {{AIME box|year=2025|num-b=9|num-a=11|n=I}} | ||
+ | |||
+ | {{MAA Notice}} |
Revision as of 19:50, 13 February 2025
Problem
The cells of a
grid are filled in using the numbers
through
so that each row contains
different numbers, and each of the three
blocks heavily outlined in the example below contains
different numbers, as in the first three rows of a Sudoku puzzle.
The number of different ways to fill such a grid can be written as where
,
,
, and
are distinct prime numbers and
,
,
,
are positive integers. Find
.
See also
2025 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.