Difference between revisions of "2025 AIME I Problems/Problem 10"

(Created blank page)
 
Line 1: Line 1:
 +
==Problem==
  
 +
The <math>27</math> cells of a <math>3 \times 9</math> grid are filled in using the numbers <math>1</math> through <math>9</math> so that each row contains <math>9</math> different numbers, and each of the three <math>3 \times 3</math> blocks heavily outlined in the example below contains <math>9</math> different numbers, as in the first three rows of a Sudoku puzzle.
 +
 +
<asy>
 +
unitsize(20);
 +
 +
add(grid(9,3));
 +
 +
draw((0,0)--(9,0)--(9,3)--(0,3)--cycle, linewidth(2));
 +
draw((3,0)--(3,3), linewidth(2)); draw((6,0)--(6,3), linewidth(2));
 +
 +
real a = 0.5;
 +
 +
label("5",(a,a));
 +
label("6",(1+a,a));
 +
label("1",(2+a,a));
 +
label("8",(3+a,a));
 +
label("4",(4+a,a));
 +
label("7",(5+a,a));
 +
label("9",(6+a,a));
 +
label("2",(7+a,a));
 +
label("3",(8+a,a));
 +
 +
label("3",(a,1+a));
 +
label("7",(1+a,1+a));
 +
label("9",(2+a,1+a));
 +
label("5",(3+a,1+a));
 +
label("2",(4+a,1+a));
 +
label("1",(5+a,1+a));
 +
label("6",(6+a,1+a));
 +
label("8",(7+a,1+a));
 +
label("4",(8+a,1+a));
 +
 +
label("4",(a,2+a));
 +
label("2",(1+a,2+a));
 +
label("8",(2+a,2+a));
 +
label("9",(3+a,2+a));
 +
label("6",(4+a,2+a));
 +
label("3",(5+a,2+a));
 +
label("1",(6+a,2+a));
 +
label("7",(7+a,2+a));
 +
label("5",(8+a,2+a));
 +
 +
</asy>
 +
 +
The number of different ways to fill such a grid can be written as <math>p^a \cdot q^b \cdot r^c \cdot s^d</math> where <math>p</math>, <math>q</math>, <math>r</math>, and <math>s</math> are distinct prime numbers and <math>a</math>, <math>b</math>, <math>c</math>, <math>d</math> are positive integers. Find <math>p \cdot a + q \cdot b + r \cdot c + s \cdot d</math>.
 +
 +
==See also==
 +
{{AIME box|year=2025|num-b=9|num-a=11|n=I}}
 +
 +
{{MAA Notice}}

Revision as of 19:50, 13 February 2025

Problem

The $27$ cells of a $3 \times 9$ grid are filled in using the numbers $1$ through $9$ so that each row contains $9$ different numbers, and each of the three $3 \times 3$ blocks heavily outlined in the example below contains $9$ different numbers, as in the first three rows of a Sudoku puzzle.

[asy] unitsize(20);  add(grid(9,3));  draw((0,0)--(9,0)--(9,3)--(0,3)--cycle, linewidth(2)); draw((3,0)--(3,3), linewidth(2)); draw((6,0)--(6,3), linewidth(2));  real a = 0.5;  label("5",(a,a)); label("6",(1+a,a)); label("1",(2+a,a)); label("8",(3+a,a)); label("4",(4+a,a)); label("7",(5+a,a)); label("9",(6+a,a)); label("2",(7+a,a)); label("3",(8+a,a));  label("3",(a,1+a)); label("7",(1+a,1+a)); label("9",(2+a,1+a)); label("5",(3+a,1+a)); label("2",(4+a,1+a)); label("1",(5+a,1+a)); label("6",(6+a,1+a)); label("8",(7+a,1+a)); label("4",(8+a,1+a));  label("4",(a,2+a)); label("2",(1+a,2+a)); label("8",(2+a,2+a)); label("9",(3+a,2+a)); label("6",(4+a,2+a)); label("3",(5+a,2+a)); label("1",(6+a,2+a)); label("7",(7+a,2+a)); label("5",(8+a,2+a));  [/asy]

The number of different ways to fill such a grid can be written as $p^a \cdot q^b \cdot r^c \cdot s^d$ where $p$, $q$, $r$, and $s$ are distinct prime numbers and $a$, $b$, $c$, $d$ are positive integers. Find $p \cdot a + q \cdot b + r \cdot c + s \cdot d$.

See also

2025 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png