Difference between revisions of "2025 AIME I Problems/Problem 2"
Mathkiddus (talk | contribs) (→Problem) |
Mathkiddus (talk | contribs) (→Problem) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
In <math>\triangle ABC</math> points <math>D</math> and <math>E</math> lie on <math>\overline{AB}</math> so that <math>AD < AE < AB</math>, while points <math>F</math> and <math>G</math> lie on <math>\overline{AC}</math> so that <math>AF < AG < AC</math>. Suppose <math>AD = 4</math>, <math>DE = 16</math>, <math>EB = 8</math>, <math>AF = 13</math>, <math>FG = 52</math>, and <math>GC = 26</math>. Let <math>M</math> be the reflection of <math>D</math> through <math>F</math>, and let <math>N</math> be the reflection of <math>G</math> through <math>E</math>. The area of quadrilateral <math>DEGF</math> is <math>288</math>. Find the area of heptagon <math>AFNBCEM</math>, as shown in the figure below. | In <math>\triangle ABC</math> points <math>D</math> and <math>E</math> lie on <math>\overline{AB}</math> so that <math>AD < AE < AB</math>, while points <math>F</math> and <math>G</math> lie on <math>\overline{AC}</math> so that <math>AF < AG < AC</math>. Suppose <math>AD = 4</math>, <math>DE = 16</math>, <math>EB = 8</math>, <math>AF = 13</math>, <math>FG = 52</math>, and <math>GC = 26</math>. Let <math>M</math> be the reflection of <math>D</math> through <math>F</math>, and let <math>N</math> be the reflection of <math>G</math> through <math>E</math>. The area of quadrilateral <math>DEGF</math> is <math>288</math>. Find the area of heptagon <math>AFNBCEM</math>, as shown in the figure below. | ||
+ | <asy> | ||
+ | unitsize(14); | ||
+ | pair A = (0, 9), B = (-6, 0), C = (12, 0), D = (5A + 2B)/7, E = (2A + 5B)/7, F = (5A + 2C)/7, G = (2A + 5C)/7, M = 2F - D, N = 2E - G; | ||
+ | filldraw(A--F--N--B--C--E--M--cycle, lightgray); | ||
+ | draw(A--B--C--cycle); | ||
+ | draw(D--M); | ||
+ | draw(N--G); | ||
+ | dot(A); | ||
+ | dot(B); | ||
+ | dot(C); | ||
+ | dot(D); | ||
+ | dot(E); | ||
+ | dot(F); | ||
+ | dot(G); | ||
+ | dot(M); | ||
+ | dot(N); | ||
+ | label("$A$", A, dir(90)); | ||
+ | label("$B$", B, dir(225)); | ||
+ | label("$C$", C, dir(315)); | ||
+ | label("$D$", D, dir(135)); | ||
+ | label("$E$", E, dir(135)); | ||
+ | label("$F$", F, dir(45)); | ||
+ | label("$G$", G, dir(45)); | ||
+ | label("$M$", M, dir(45)); | ||
+ | label("$N$", N, dir(135)); | ||
+ | </asy> |
Revision as of 17:01, 13 February 2025
Problem
In points
and
lie on
so that
, while points
and
lie on
so that
. Suppose
,
,
,
,
, and
. Let
be the reflection of
through
, and let
be the reflection of
through
. The area of quadrilateral
is
. Find the area of heptagon
, as shown in the figure below.