Difference between revisions of "2006 AIME I Problems/Problem 1"

(Formatting)
m (Formatting)
 
Line 16: Line 16:
 
<cmath>AD^2 = AC^2 + CD^2</cmath>
 
<cmath>AD^2 = AC^2 + CD^2</cmath>
 
<cmath>AC^2 = AB^2 + BC^2</cmath>
 
<cmath>AC^2 = AB^2 + BC^2</cmath>
Substituting <math>AB^2 + BC^2</math> for <math>AC^2</math> gives us:
+
Substituting <math>AB^2 + BC^2</math> for <math>AC^2</math> gives us <math>AD^2 = AB^2 + BC^2 + CD^2</math>. Plugging in the given information, we get <math>AD^2 = 18^2 + 21^2 + 14^2 = 961 \implies AD = 31</math>, so the perimeter is <math>AB+BC+CD+AD = 18+21+14+31 = \boxed{084}</math>.
<cmath>AD^2 = AB^2 + BC^2 + CD^2</cmath>
 
Plugging in the given information:
 
<cmath>AD^2 = 18^2 + 21^2 + 14^2 = 961 \implies AD = 31</cmath>
 
So the perimeter is <math>AB+BC+CD+AD = 18+21+14+31 = \boxed{084}</math>.
 
  
 
== See Also ==
 
== See Also ==

Latest revision as of 15:10, 3 February 2025

Problem

In quadrilateral $ABCD$, $\angle B$ is a right angle, diagonal $\overline{AC}$ is perpendicular to $\overline{CD}$, $AB=18$, $BC=21$, and $CD=14$. Find the perimeter of $ABCD$.

Solution 1

We construct the following diagram: [asy] pathpen = black; pair C=(0,0),D=(0,-14),A=(-sqrt(765),0),B=IP(circle(C,21),circle(A,18)); D(MP("A",A,W)--MP("B",B,N)--MP("C",C,E)--MP("D",D,E)--A--C); D(rightanglemark(A,C,D,40)); D(rightanglemark(A,B,C,40)); [/asy] Using the Pythagorean Theorem, we get the following two equations: \[AD^2 = AC^2 + CD^2\] \[AC^2 = AB^2 + BC^2\] Substituting $AB^2 + BC^2$ for $AC^2$ gives us $AD^2 = AB^2 + BC^2 + CD^2$. Plugging in the given information, we get $AD^2 = 18^2 + 21^2 + 14^2 = 961 \implies AD = 31$, so the perimeter is $AB+BC+CD+AD = 18+21+14+31 = \boxed{084}$.

See Also

2006 AIME I (ProblemsAnswer KeyResources)
Preceded by
First Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png