Difference between revisions of "2024 AMC 10A Problems/Problem 1"

(Solution 7 (Cubes))
(Solution 8 (Super Fast))
Line 1: Line 1:
 
{{duplicate|[[2024 AMC 10A Problems/Problem 1|2024 AMC 10A #1]] and [[2024 AMC 12A Problems/Problem 1|2024 AMC 12A #1]]}}
 
{{duplicate|[[2024 AMC 10A Problems/Problem 1|2024 AMC 10A #1]] and [[2024 AMC 12A Problems/Problem 1|2024 AMC 12A #1]]}}
 
==Solution 8 (Super Fast)==
 
 
It's not hard to observe and express <math>9901</math> into <math>99\cdot100+1</math>, and <math>10101</math> into <math>101\cdot100+1</math>.
 
 
We then simplify the original expression into <math>(99\cdot100+1)\cdot101-99\cdot(101\cdot100+1)</math>, which could then be simplified into <math>99\cdot100\cdot101+101-99\cdot100\cdot101-99</math>, which we can get the answer of <math>101-99=\boxed{\textbf{(A) }2}</math>.
 
 
~RULE101
 
  
 
== Video Solution (⚡️ 1 min solve ⚡️) ==
 
== Video Solution (⚡️ 1 min solve ⚡️) ==

Revision as of 02:07, 31 January 2025

The following problem is from both the 2024 AMC 10A #1 and 2024 AMC 12A #1, so both problems redirect to this page.

Video Solution (⚡️ 1 min solve ⚡️)

https://youtu.be/RODYXdpipdc

~Education, the Study of Everything

Video Solution by Pi Academy

https://youtu.be/GPoTfGAf8bc?si=JYDhLVzfHUbXa3DW

Video Solution by FrankTutor

https://www.youtube.com/watch?v=ez095SvW5xI

Video Solution Daily Dose of Math

https://youtu.be/Z76bafQsqTc

~Thesmartgreekmathdude

Video Solution 1 by Power Solve

https://www.youtube.com/watch?v=j-37jvqzhrg

Video Solution by SpreadTheMathLove

https://www.youtube.com/watch?v=6SQ74nt3ynw

Video Solution by Math from my desk

https://www.youtube.com/watch?v=n_G6wi1ulzY