Difference between revisions of "2016 AMC 8 Problems/Problem 23"

(Video Solution by WhyMath)
m (Solution 1)
Line 6: Line 6:
 
==Solutions==
 
==Solutions==
 
===Solution 1===
 
===Solution 1===
Observe that <math>\triangle{EAB}</math> is equilateral. Therefore, <math>m\angle{AEB}=m\angle{EAB}=m\angle{EBA} = 60^{\circ}</math>. Since <math>CD</math> is a straight line, we conclude that <math>m\angle{EBD} = 180^{\circ}-60^{\circ}=120^{\circ}</math>. Since <math>BE=BD</math> (both are radii of the same circle), <math>\triangle{BED}</math> is isosceles, meaning that <math>m\angle{BED}=m\angle{BDE}=30^{\circ}</math>. Similarly, <math>m\angle{AEC}=m\angle{ACE}=30^{\circ}</math>.  
+
Observe that <math>\triangle{EAB}</math> is equilateral (all are radii of congruent circles). Therefore, <math>m\angle{AEB}=m\angle{EAB}=m\angle{EBA} = 60^{\circ}</math>. Since <math>CD</math> is a straight line, we conclude that <math>m\angle{EBD} = 180^{\circ}-60^{\circ}=120^{\circ}</math>. Since <math>BE=BD</math> (both are radii of the same circle), <math>\triangle{BED}</math> is isosceles, meaning that <math>m\angle{BED}=m\angle{BDE}=30^{\circ}</math>. Similarly, <math>m\angle{AEC}=m\angle{ACE}=30^{\circ}</math>.  
  
 
Now, <math>\angle{CED}=m\angle{AEC}+m\angle{AEB}+m\angle{BED} = 30^{\circ}+60^{\circ}+30^{\circ} = 120^{\circ}</math>. Therefore, the answer is <math>\boxed{\textbf{(C) }\ 120}</math>.
 
Now, <math>\angle{CED}=m\angle{AEC}+m\angle{AEB}+m\angle{BED} = 30^{\circ}+60^{\circ}+30^{\circ} = 120^{\circ}</math>. Therefore, the answer is <math>\boxed{\textbf{(C) }\ 120}</math>.

Revision as of 04:26, 18 January 2025

Problem

Two congruent circles centered at points $A$ and $B$ each pass through the other circle's center. The line containing both $A$ and $B$ is extended to intersect the circles at points $C$ and $D$. The circles intersect at two points, one of which is $E$. What is the degree measure of $\angle CED$?

$\textbf{(A) }90\qquad\textbf{(B) }105\qquad\textbf{(C) }120\qquad\textbf{(D) }135\qquad \textbf{(E) }150$

Solutions

Solution 1

Observe that $\triangle{EAB}$ is equilateral (all are radii of congruent circles). Therefore, $m\angle{AEB}=m\angle{EAB}=m\angle{EBA} = 60^{\circ}$. Since $CD$ is a straight line, we conclude that $m\angle{EBD} = 180^{\circ}-60^{\circ}=120^{\circ}$. Since $BE=BD$ (both are radii of the same circle), $\triangle{BED}$ is isosceles, meaning that $m\angle{BED}=m\angle{BDE}=30^{\circ}$. Similarly, $m\angle{AEC}=m\angle{ACE}=30^{\circ}$.

Now, $\angle{CED}=m\angle{AEC}+m\angle{AEB}+m\angle{BED} = 30^{\circ}+60^{\circ}+30^{\circ} = 120^{\circ}$. Therefore, the answer is $\boxed{\textbf{(C) }\ 120}$.

Video Solution by Elijahman

https://youtu.be/UZqVG5Q1liA?si=LDc8tMTnj1FMMlZc

~Elijahman

Video Solution by Education, The Study of Everything

https://youtu.be/iGG_Hz-V6lU

Video Solution by Omega Learn

https://youtu.be/FDgcLW4frg8?t=968

~ pi_is_3.14

Video Solution by WhyMath

https://youtu.be/nLlnMO6D5ek

~savannahsolver

See Also

2016 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png