Difference between revisions of "2023 AMC 8 Problems/Problem 2"

(*Easy Video Explanation by MathTalks_Now*)
 
Line 136: Line 136:
  
 
~AliceDubbleYou
 
~AliceDubbleYou
 +
 +
==Video Solution by CoolMathProblms==
 +
https://youtu.be/Pf93RGtKo1I?feature=shared&t=50
  
 
==*Easy Video Explanation by MathTalks_Now*==
 
==*Easy Video Explanation by MathTalks_Now*==

Latest revision as of 11:12, 12 January 2025

Problem

A square piece of paper is folded twice into four equal quarters, as shown below, then cut along the dashed line. When unfolded, the paper will match which of the following figures? [asy]  //Restored original diagram. Alter it if you would like, but it was made by TheMathGuyd, // Diagram by TheMathGuyd. I even put the lined texture :) // Thank you Kante314 for inspiring thicker arrows. They do look much better size(0,3cm); path sq = (-0.5,-0.5)--(0.5,-0.5)--(0.5,0.5)--(-0.5,0.5)--cycle; path rh = (-0.125,-0.125)--(0.5,-0.5)--(0.5,0.5)--(-0.125,0.875)--cycle; path sqA = (-0.5,-0.5)--(-0.25,-0.5)--(0,-0.25)--(0.25,-0.5)--(0.5,-0.5)--(0.5,-0.25)--(0.25,0)--(0.5,0.25)--(0.5,0.5)--(0.25,0.5)--(0,0.25)--(-0.25,0.5)--(-0.5,0.5)--(-0.5,0.25)--(-0.25,0)--(-0.5,-0.25)--cycle; path sqB = (-0.5,-0.5)--(-0.25,-0.5)--(0,-0.25)--(0.25,-0.5)--(0.5,-0.5)--(0.5,0.5)--(0.25,0.5)--(0,0.25)--(-0.25,0.5)--(-0.5,0.5)--cycle; path sqC = (-0.25,-0.25)--(0.25,-0.25)--(0.25,0.25)--(-0.25,0.25)--cycle; path trD = (-0.25,0)--(0.25,0)--(0,0.25)--cycle; path sqE = (-0.25,0)--(0,-0.25)--(0.25,0)--(0,0.25)--cycle; filldraw(sq,mediumgrey,black); draw((0.75,0)--(1.25,0),currentpen+1,Arrow(size=6)); //folding path sqside = (-0.5,-0.5)--(0.5,-0.5); path rhside = (-0.125,-0.125)--(0.5,-0.5); transform fld = shift((1.75,0))*scale(0.5); draw(fld*sq,black); int i; for(i=0; i<10; i=i+1) {   draw(shift(0,0.05*i)*fld*sqside,deepblue); } path rhedge = (-0.125,-0.125)--(-0.125,0.8)--(-0.2,0.85)--cycle; filldraw(fld*rhedge,grey); path sqedge = (-0.5,-0.5)--(-0.5,0.4475)--(-0.575,0.45)--cycle; filldraw(fld*sqedge,grey); filldraw(fld*rh,white,black); int i; for(i=0; i<10; i=i+1) {   draw(shift(0,0.05*i)*fld*rhside,deepblue); } draw((2.25,0)--(2.75,0),currentpen+1,Arrow(size=6)); //cutting transform cut = shift((3.25,0))*scale(0.5); draw(shift((-0.01,+0.01))*cut*sq); draw(cut*sq); filldraw(shift((0.01,-0.01))*cut*sq,white,black); int j; for(j=0; j<10; j=j+1) { draw(shift(0,0.05*j)*cut*sqside,deepblue); } draw(shift((0.01,-0.01))*cut*(0,-0.5)--shift((0.01,-0.01))*cut*(0.5,0),dashed); //Answers Below, but already Separated //filldraw(sqA,grey,black); //filldraw(sqB,grey,black); //filldraw(sq,grey,black); //filldraw(sqC,white,black); //filldraw(sq,grey,black); //filldraw(trD,white,black); //filldraw(sq,grey,black); //filldraw(sqE,white,black); [/asy]

[asy] // Diagram by TheMathGuyd. size(0,7.5cm); path sq = (-0.5,-0.5)--(0.5,-0.5)--(0.5,0.5)--(-0.5,0.5)--cycle; path rh = (-0.125,-0.125)--(0.5,-0.5)--(0.5,0.5)--(-0.125,0.875)--cycle; path sqA = (-0.5,-0.5)--(-0.25,-0.5)--(0,-0.25)--(0.25,-0.5)--(0.5,-0.5)--(0.5,-0.25)--(0.25,0)--(0.5,0.25)--(0.5,0.5)--(0.25,0.5)--(0,0.25)--(-0.25,0.5)--(-0.5,0.5)--(-0.5,0.25)--(-0.25,0)--(-0.5,-0.25)--cycle; path sqB = (-0.5,-0.5)--(-0.25,-0.5)--(0,-0.25)--(0.25,-0.5)--(0.5,-0.5)--(0.5,0.5)--(0.25,0.5)--(0,0.25)--(-0.25,0.5)--(-0.5,0.5)--cycle; path sqC = (-0.25,-0.25)--(0.25,-0.25)--(0.25,0.25)--(-0.25,0.25)--cycle; path trD = (-0.25,0)--(0.25,0)--(0,0.25)--cycle; path sqE = (-0.25,0)--(0,-0.25)--(0.25,0)--(0,0.25)--cycle;  //ANSWERS real sh = 1.5; label("$\textbf{(A)}$",(-0.5,0.5),SW); label("$\textbf{(B)}$",shift((sh,0))*(-0.5,0.5),SW); label("$\textbf{(C)}$",shift((2sh,0))*(-0.5,0.5),SW); label("$\textbf{(D)}$",shift((0,-sh))*(-0.5,0.5),SW); label("$\textbf{(E)}$",shift((sh,-sh))*(-0.5,0.5),SW); filldraw(sqA,mediumgrey,black); filldraw(shift((sh,0))*sqB,mediumgrey,black); filldraw(shift((2*sh,0))*sq,mediumgrey,black); filldraw(shift((2*sh,0))*sqC,white,black); filldraw(shift((0,-sh))*sq,mediumgrey,black); filldraw(shift((0,-sh))*trD,white,black); filldraw(shift((sh,-sh))*sq,mediumgrey,black); filldraw(shift((sh,-sh))*sqE,white,black); [/asy]

Solution

Notice that when we unfold the paper along the vertical fold line, we get the following shape:


[asy]  size(90); path sq = (-0.5,0)--(0.5,0)--(0.5,0.5)--(-0.5,0.5)--cycle; path trE = (-0.25,0)--(0.25,0)--(0,0.25)--cycle;  real sh = 1.5; filldraw(shift((sh,-sh))*sq,mediumgrey,black); filldraw(shift((sh,-sh))*trE,white,black);  size(90); path sq = (-0.5,-0.5)--(0.5,-0.5)--(0.5,0.5)--(-0.5,0.5)--cycle; path sqE = (-0.25,0)--(0,-0.25)--(0.25,0)--(0,0.25)--cycle;  real sh = 1.5; filldraw(shift((sh,-sh))*sq,mediumgrey,black); filldraw(shift((sh,-sh))*sqE,white,black); [/asy]

It is clear that the answer is $\boxed{\textbf{(E)}}$.

~MrThinker

Solution 2

When you fold the paper in that specific way, it shows the top left square. That means that any cut you make on that folded part will look like that on that top left square. Since it is folded into four parts, the cut will reflect on all of the other 3 parts. Since there is a cut diagonally on the bottom right of that square, that will reflect on the other squares, making the shape of $\boxed{\textbf{(E)}}$ [asy]  size(90); path sq = (-0.5,0)--(0.5,0)--(0.5,0.5)--(-0.5,0.5)--cycle; path trE = (-0.25,0)--(0.25,0)--(0,0.25)--cycle;  real sh = 1.5; filldraw(shift((sh,-sh))*sq,mediumgrey,black); filldraw(shift((sh,-sh))*trE,white,black);  size(90); path sq = (-0.5,-0.5)--(0.5,-0.5)--(0.5,0.5)--(-0.5,0.5)--cycle; path sqE = (-0.25,0)--(0,-0.25)--(0.25,0)--(0,0.25)--cycle;  real sh = 1.5; filldraw(shift((sh,-sh))*sq,mediumgrey,black); filldraw(shift((sh,-sh))*sqE,white,black); [/asy]

~AliceDubbleYou

Video Solution by CoolMathProblms

https://youtu.be/Pf93RGtKo1I?feature=shared&t=50

*Easy Video Explanation by MathTalks_Now*

https://studio.youtube.com/video/PMOeiGLkDH0/edit

Video Solution (A Clever Explanation You’ll Get Instantly)

https://youtu.be/zntZrtsnyxc?si=nM5eWOwNU6HRdleZ&t=76 ~hsnacademy

Video Solution by Math-X (Smart and Simple)

https://youtu.be/Ku_c1YHnLt0?si=ZucTBcN42MKGX2Ty&t=115 ~Math-X

Video Solution (How to Creatively THINK!!!)

https://youtu.be/suFxwnH-ak8 ~Education the Study of everything

Video Solution by Magic Square

https://youtu.be/-N46BeEKaCQ?t=5658

Video Solution by SpreadTheMathLove

https://www.youtube.com/watch?v=EcrktBc8zrM

Video Solution by Interstigation

https://youtu.be/DBqko2xATxs&t=67

Video Solution by WhyMath

https://youtu.be/z6SxQkQACjo?si=WJAMIdKzUO7oGLGc

Video Solution by harungurcan

https://www.youtube.com/watch?v=35BW7bsm_Cg&t=97s

~harungurcan

Video Solution by Dr. David

https://youtu.be/octW02FH-iU

See Also

2023 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png