Difference between revisions of "2005 AMC 12A Problems/Problem 9"
(→Solution 2 (Slow)) |
(→Video Solution by OmegaLearn) |
||
Line 8: | Line 8: | ||
https://youtu.be/3dfbWzOfJAI?t=222 | https://youtu.be/3dfbWzOfJAI?t=222 | ||
− | ~ | + | ~AVM2023 |
=== Solution 1 (Slowest)=== | === Solution 1 (Slowest)=== |
Revision as of 11:15, 30 December 2024
Contents
Problem
There are two values of for which the equation has only one solution for . What is the sum of these values of ?
Solution
Video Solution by OmegaLearn
https://youtu.be/3dfbWzOfJAI?t=222 ~AVM2023
Solution 1 (Slowest)
We first rewrite as . Since there is only one root, the discriminant, , has to be 0. We solve the remaining as below: . . To apply the quadratic formula, we rewrite as . Then the formula yields: . Which is, . This gives and , which sums up to . ~AVM2023
Solution 2 (Slow)
We first rewrite as . Since there is only one root, the discriminant, , has to be 0. We expand as . Applying our discriminant rule yields: . To apply the quadratic formula, we rewrite as . Then the formula yields: . Which is, . Notice that we have to find the sum of the two values, since the average is obviously , the sum is . ~AVM2023
Solution 3 (Quick)
We first rewrite as . Since there is only one root, the discriminant, , has to be 0. We solve the remaining as below: so . So is either or , which make either or , respectively. The sum of these values is . ~AVM2023
Solution 3 (Quick)
We first rewrite as . Since there is only one root, the discriminant, , has to be 0. We solve the remaining as below: so . So is either or , which make , the sum, or , is . ~AVM2023
See also
2005 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 8 |
Followed by Problem 10 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.