Difference between revisions of "2005 AMC 12A Problems/Problem 9"
(→Solution 3 (Quick)) |
(→Solution 3 (Quick)) |
||
Line 43: | Line 43: | ||
=== Solution 3 (Quick)=== | === Solution 3 (Quick)=== | ||
We first rewrite <math>4x^2 + ax + 8x + 9 = 0</math> as <math>4x^2 + (a+8)x + 9 = 0</math>. Since there is only one root, the discriminant, <math>(a+8)^2-144</math>, has to be 0. We solve the remaining as below: | We first rewrite <math>4x^2 + ax + 8x + 9 = 0</math> as <math>4x^2 + (a+8)x + 9 = 0</math>. Since there is only one root, the discriminant, <math>(a+8)^2-144</math>, has to be 0. We solve the remaining as below: | ||
− | <math>(a+8)^2-144=0</math> | + | <math>(a+8)^2-144=0</math> so |
<math>(a+8)^2=144</math>. | <math>(a+8)^2=144</math>. | ||
So <math>a+8</math> is either <math>12</math> or <math>-12</math>, which make <math>2a+16=0</math>, the sum, or <math>2a</math>, is <math>\boxed{-16\text{ (A)}}</math>. | So <math>a+8</math> is either <math>12</math> or <math>-12</math>, which make <math>2a+16=0</math>, the sum, or <math>2a</math>, is <math>\boxed{-16\text{ (A)}}</math>. |
Revision as of 11:12, 30 December 2024
Contents
Problem
There are two values of for which the equation has only one solution for . What is the sum of these values of ?
Solution
Video Solution by OmegaLearn
https://youtu.be/3dfbWzOfJAI?t=222 ~pi_is_3.14
Solution 1 (Slowest)
We first rewrite as . Since there is only one root, the discriminant, , has to be 0. We solve the remaining as below: . . To apply the quadratic formula, we rewrite as . Then the formula yields: . Which is, . This gives and , which sums up to . ~AVM2023
Solution 2 (Slow)
We first rewrite as . Since there is only one root, the discriminant, , has to be 0. We solve the remaining as below: . . To apply the quadratic formula, we rewrite as . Then the formula yields: . Which is, . Notice that we have to find the sum of the two values, since the average is obviously , the sum is . ~AVM2023
Solution 3 (Quick)
We first rewrite as . Since there is only one root, the discriminant, , has to be 0. We solve the remaining as below: . . So is either or , which make either or , respectively. The sum of these values is . ~AVM2023
Solution 3 (Quick)
We first rewrite as . Since there is only one root, the discriminant, , has to be 0. We solve the remaining as below: so . So is either or , which make , the sum, or , is . ~AVM2023
See also
2005 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 8 |
Followed by Problem 10 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.