Difference between revisions of "2005 AMC 12A Problems/Problem 9"

(Solution 1 (Slowest))
(Solution 2)
Line 22: Line 22:
 
~AVM2023
 
~AVM2023
  
=== Solution 2 ===
+
=== Solution 2 (Slow)===
Another method would be to use the quadratic formula, since our <math>x^2</math> coefficient is given as 4, the <math>x</math> coefficient is <math>a+8</math> and the constant term is <math>9</math>. Hence, <math>x = \frac{-(a+8) \pm \sqrt {(a+8)^2-4(4)(9)}}{2(4)}</math> Because we want only a single solution for <math>x</math>, the determinant must equal 0. Therefore, we can write <math>(a+8)^2 - 144 = 0</math> which factors to <math>a^2 + 16a - 80 = 0</math>; using [[Vieta's formulas]] we see that the sum of the solutions for <math>a</math> is the opposite of the coefficient of <math>a</math>, or <math>-16 \Rightarrow \mathrm{ (A)}</math>.
+
We first rewrite <math>4x^2 + ax + 8x + 9 = 0</math> as <math>4x^2 + (a+8)x + 9 = 0</math>. Since there is only one root, the discriminant, <math>(a+8)^2-144</math>, has to be 0. We solve the remaining as below:
 +
<math>(a+8)^2 = a^2+16a+64</math>.
 +
<math>a^2+16a+64-144=a^2+16a-80</math>.
 +
To apply the quadratic formula, we rewrite <math>a^2+16a-80</math> as <math>a^2+16a+-80</math>.
 +
Then the formula yields:
 +
<math>\frac{-16\pm24}{2}</math>.
 +
Which is,
 +
<math>-8\pm12</math>.
 +
Notice that we have to find the sum of the two values, since the average is obviously <math>-8</math>, the sum is <math>2\cdot-8=\boxed{-16\text{ (A)}}</math>
 +
~AVM2023
  
 
=== Solution 3 ===
 
=== Solution 3 ===

Revision as of 11:01, 30 December 2024

Problem

There are two values of $a$ for which the equation $4x^2 + ax + 8x + 9 = 0$ has only one solution for $x$. What is the sum of these values of $a$?

$(\mathrm {A}) \ -16 \qquad (\mathrm {B}) \ -8 \qquad (\mathrm {C})\ 0 \qquad (\mathrm {D}) \ 8 \qquad (\mathrm {E})\ 20$

Solution

Video Solution

https://youtu.be/3dfbWzOfJAI?t=222 ~pi_is_3.14

Solution 1 (Slowest)

We first rewrite $4x^2 + ax + 8x + 9 = 0$ as $4x^2 + (a+8)x + 9 = 0$. Since there is only one root, the discriminant, $(a+8)^2-144$, has to be 0. We solve the remaining as below: $(a+8)^2 = a^2+16a+64$. $a^2+16a+64-144=a^2+16a-80$. To apply the quadratic formula, we rewrite $a^2+16a-80$ as $a^2+16a+-80$. Then the formula yields: $\frac{-16\pm24}{2}$. Which is, $-8\pm12$. This gives $-20$ and $4$, which sums up to $\boxed{-16\text{ (A)}}$ ~AVM2023

Solution 2 (Slow)

We first rewrite $4x^2 + ax + 8x + 9 = 0$ as $4x^2 + (a+8)x + 9 = 0$. Since there is only one root, the discriminant, $(a+8)^2-144$, has to be 0. We solve the remaining as below: $(a+8)^2 = a^2+16a+64$. $a^2+16a+64-144=a^2+16a-80$. To apply the quadratic formula, we rewrite $a^2+16a-80$ as $a^2+16a+-80$. Then the formula yields: $\frac{-16\pm24}{2}$. Which is, $-8\pm12$. Notice that we have to find the sum of the two values, since the average is obviously $-8$, the sum is $2\cdot-8=\boxed{-16\text{ (A)}}$ ~AVM2023

Solution 3

Using the discriminant, the result must equal $0$. $D = b^2 - 4ac$ $= (a+8)^2 - 4(4)(9)$ $= a^2 + 16a + 64 - 144$ $= a^2 + 16a - 80 = 0 \Rightarrow$ $(a + 20)(a - 4) = 0$ Therefore, $a = -20$ or $a = 4$, giving a sum of $-16 \Rightarrow \mathrm{ (A)}$.

Solution 4

First, notice that for there to be only $1$ root to a quadratic, the quadratic must be a square. Then, notice that the quadratic and linear terms are both squares. Thus, the value of $a$ must be such that both $(2x+3)^2$ and $(2x-3)^2$. Clearly, $a=4$ or $a=-20$. Hence $-20 + 4 = -16 \Rightarrow \mathrm{(A)}$.

Solution by franzliszt

See also

2005 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png