Difference between revisions of "1963 AHSME Problems/Problem 39"

(Solution 2 (Mass Geometry))
(Solution 3 (Menelaus’s Theorem))
 
Line 93: Line 93:
 
==Solution 3 (Menelaus’s Theorem)==
 
==Solution 3 (Menelaus’s Theorem)==
 
By using Menelaus’s Theorem on triangle BCE and points A, P, D, we can substitute in the known values to find that the answer is 5.
 
By using Menelaus’s Theorem on triangle BCE and points A, P, D, we can substitute in the known values to find that the answer is 5.
 +
-pengu14
  
 
==See Also==
 
==See Also==

Latest revision as of 15:06, 27 December 2024

Problem 39

In $\triangle ABC$ lines $CE$ and $AD$ are drawn so that $\dfrac{CD}{DB}=\dfrac{3}{1}$ and $\dfrac{AE}{EB}=\dfrac{3}{2}$. Let $r=\dfrac{CP}{PE}$ where $P$ is the intersection point of $CE$ and $AD$. Then $r$ equals:

[asy] size(8cm); pair A = (0, 0), B = (9, 0), C = (3, 6); pair D = (7.5, 1.5), E = (6.5, 0); pair P = intersectionpoints(A--D, C--E)[0]; draw(A--B--C--cycle); draw(A--D); draw(C--E); label("$A$", A, SW); label("$B$", B, SE); label("$C$", C, N); label("$D$", D, NE); label("$E$", E, S); label("$P$", P, S); //Credit to MSTang for the asymptote[/asy]

$\textbf{(A)}\ 3 \qquad \textbf{(B)}\ \dfrac{3}{2}\qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ 5 \qquad \textbf{(E)}\ \dfrac{5}{2}$

Solution

[asy] size(8cm); pair A = (0, 0), B = (9, 0), C = (3, 6); pair D = (7.5, 1.5), E = (6.5, 0); pair P = intersectionpoints(A--D, C--E)[0]; draw(A--B--C--cycle); draw(A--D); draw(C--E); label("$A$", A, SW); label("$B$", B, SE); label("$C$", C, N); label("$D$", D, NE); label("$E$", E, S); label("$P$", P, S); draw(P--B,dotted); //Credit to MSTang for the asymptote[/asy]

Draw line $PB$, and let $[PEB] = 2b$, $[PDB] = a$, and $[CAP] = c$, so $[CPD] = 3a$ and $[APE] = 3b$. Because $\triangle CAE$ and $\triangle CEB$ share an altitude, \[c + 3b = \tfrac{3}{2} (3a+a+2b)\] \[c + 3b = 6a + 3b\] \[c  = 6a\] Because $\triangle ACD$ and $\triangle ABD$ share an altitude, \[6a+3a = 3(a+2b+3b)\] \[9a = 3a+15b\] \[6a = 15b\] \[a = \tfrac{5}{2}b\] Thus, $[CAP] = 15b$, and since $[APE] = 3b$, $r = \tfrac{CP}{PE} = 5$, which is answer choice $\boxed{\textbf{(D)}}$.

Solution 2 (Mass Geometry)

Let the mass of point $A$, $B$, $C$, $D$, and $E$ be $mA$, $mB$, $mC$, $mD$, and $mE$ respectively. By mass geometry theorems, we have \begin{align*} \frac{CP}{PE} = \frac{mE}{mC} \end{align*} Focusing on the line segment $AB$, using mass geometry theorems, we have \begin{align*} mE = mA + mB \end{align*} and \begin{align*} \frac{3}{2} &= \frac{mB}{mA} \\ mA &= \frac{2}{3}mB \end{align*} which leads to $mE = \frac{5}{3}mB$. For line segment $CB$, similarly, we got \[mC = \frac{1}{3}mB\] Substituting $mC$ and $mE$ back to the equation we obtained at the beginning, we got: \begin{align*} \frac{CP}{PE} = \frac{mE}{mC} = \frac{\frac{5}{3}mB}{\frac{1}{3}mB} = 5 \end{align*} which gives us the answer choice $\boxed{\textbf{(D)}}$. -nullptr07

Solution 3 (Menelaus’s Theorem)

By using Menelaus’s Theorem on triangle BCE and points A, P, D, we can substitute in the known values to find that the answer is 5. -pengu14

See Also

1963 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 38
Followed by
Problem 40
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png