Difference between revisions of "1977 AHSME Problems/Problem 21"

(See Also)
 
Line 15: Line 15:
 
~alexanderruan
 
~alexanderruan
  
==See Also==
 
 
== See Also ==
 
== See Also ==
 
{{AHSME box|year=1977|num-b=20|num-a=22}}
 
{{AHSME box|year=1977|num-b=20|num-a=22}}

Latest revision as of 16:57, 17 December 2024

Problem

For how many values of the coefficient a do the equations \begin{align*}x^2+ax+1=0 \\ x^2-x-a=0\end{align*} have a common real solution?

$\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 3 \qquad \textbf{(E)}\ \infty$

Solution

Subtracting the equations, we get $ax+x+1+a=0$, or $(x+1)(a+1)=0$, so $x=-1$ or $a=-1$. If $x=-1$, then $a=2$, which satisfies the condition. If $a=-1$, then $x$ is nonreal. This means that $a=-1$ is the only number that works, so our answer is $(B)$.

~alexanderruan

See Also

1977 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions