GET READY FOR THE AMC 12 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 12 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2008 AMC 12B Problems"

(forum unlocked...)
 
(Entered a bunch of questions)
Line 1: Line 1:
 
==Problem 1==
 
==Problem 1==
 +
A basketball player made <math>5</math> baskets during a game. Each basket was worth either <math>2</math> or <math>3</math> points. How many different numbers could represent the total points scored by the player?
 +
 +
<math>\textbf{(A)}\ 2 \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ 5 \qquad \textbf{(E)}\ 6</math>
  
 
([[2008 AMC 12B Problems/Problem 1|Solution]])
 
([[2008 AMC 12B Problems/Problem 1|Solution]])
 
==Problem 2==
 
==Problem 2==
 +
A <math>4\times 4</math> block of calendar dates is shown. The order of the numbers in the second row is to be reversed. Then the order of the numbers in the fourth row is to be reversed. Finally, the numbers on each diagonal are to be added. What will be the positive difference between the two diagonal sums?
 +
 +
<math>\setlength{\unitlength}{5mm} \begin{picture}(4,4)(0,0) \multiput(0,0)(0,1){5}{\line(1,0){4}} \multiput(0,0)(1,0){5}{\line(0,1){4}} \put(0,3){\makebox(1,1){\footnotesize{1}}} \put(1,3){\makebox(1,1){\footnotesize{2}}} \put(2,3){\makebox(1,1){\footnotesize{3}}} \put(3,3){\makebox(1,1){\footnotesize{4}}} \put(0,2){\makebox(1,1){\footnotesize{8}}} \put(1,2){\makebox(1,1){\footnotesize{9}}} \put(2,2){\makebox(1,1){\footnotesize{10}}} \put(3,2){\makebox(1,1){\footnotesize{11}}} \put(0,1){\makebox(1,1){\footnotesize{15}}} \put(1,1){\makebox(1,1){\footnotesize{16}}} \put(2,1){\makebox(1,1){\footnotesize{17}}} \put(3,1){\makebox(1,1){\footnotesize{18}}} \put(0,0){\makebox(1,1){\footnotesize{22}}} \put(1,0){\makebox(1,1){\footnotesize{23}}} \put(2,0){\makebox(1,1){\footnotesize{24}}} \put(3,0){\makebox(1,1){\footnotesize{25}}} \end{picture}</math>
 +
 +
<math>\textbf{(A)}\ 2 \qquad \textbf{(B)}\ 4 \qquad \textbf{(C)}\ 6 \qquad \textbf{(D)}\ 8 \qquad \textbf{(E)}\ 10</math>
  
 
([[2008 AMC 12B Problems/Problem 2|Solution]])
 
([[2008 AMC 12B Problems/Problem 2|Solution]])
 
==Problem 3==
 
==Problem 3==
 +
A semipro baseball league has teams with <math>21</math> players each. League rules state that a player must be paid at least <math>15,000</math> dollars, and that the total of all players' salaries for each team cannot exceed <math>700,000</math> dollars. What is the maximum possiblle salary, in dollars, for a single player?
 +
 +
<math>\textbf{(A)}\ 270,000 \qquad \textbf{(B)}\ 385,000 \qquad \textbf{(C)}\ 400,000 \qquad \textbf{(D)}\ 430,000 \qquad \textbf{(E)}\ 700,000</math>
  
 
([[2008 AMC 12B Problems/Problem 3|Solution]])
 
([[2008 AMC 12B Problems/Problem 3|Solution]])
 
==Problem 4==
 
==Problem 4==
 +
On circle <math>O</math>, points <math>C</math> and <math>D</math> are on the same side of diameter <math>\overline{AB}</math>, <math>\angle AOC = 30^\circ</math>, and <math>\angle DOB = 45^\circ</math>. What is the ratio of the area of the smaller sector <math>COD</math> to the area of the circle?
 +
 +
<asy>
 +
unitsize(6mm);
 +
defaultpen(linewidth(0.7)+fontsize(8pt));
 +
 +
pair C = 3*dir (30);
 +
pair D = 3*dir (135);
 +
pair A = 3*dir (0);
 +
pair B = 3*dir(180);
 +
pair O = (0,0);
 +
draw (Circle ((0, 0), 3));
 +
label ("\(C\)", C, NE);
 +
label ("\(D\)", D, NW);
 +
label ("\(B\)", B, W);
 +
label ("\(A\)", A, E);
 +
label ("\(O\)", O, S);
 +
label ("\(45^\circ\)", (-0.3,0.1), WNW);
 +
label ("\(30^\circ\)", (0.5,0.1), ENE);
 +
draw (A--B);
 +
draw (O--D);
 +
draw (O--C);
 +
</asy>
 +
 +
<math>\textbf{(A)}\ \frac {2}{9} \qquad \textbf{(B)}\ \frac {1}{4} \qquad \textbf{(C)}\ \frac {5}{18} \qquad \textbf{(D)}\ \frac {7}{24} \qquad \textbf{(E)}\ \frac {3}{10}</math>
  
 
([[2008 AMC 12B Problems/Problem 4|Solution]])
 
([[2008 AMC 12B Problems/Problem 4|Solution]])
 
==Problem 5==
 
==Problem 5==
 +
A class collects <math>50</math> dollars to buy flowers for a classmate who is in the hospital. Roses cost <math>3</math> dollars each, and carnations cost <math>2</math> dollars each. No other flowers are to be used. How many different bouquets could be purchased for exactly <math>50</math> dollars?
 +
 +
<math>\textbf{(A)}\ 1 \qquad \textbf{(B)}\ 7 \qquad \textbf{(C)}\ 9 \qquad \textbf{(D)}\ 16 \qquad \textbf{(E)}\ 17</math>
  
 
([[2008 AMC 12B Problems/Problem 5|Solution]])
 
([[2008 AMC 12B Problems/Problem 5|Solution]])
 
==Problem 6==
 
==Problem 6==
 +
Postman Pete has a pedometer to count his steps. The pedometer records up to <math>99999</math> steps, then flips over to <math>00000</math> on the next step. Pete plans to determine his mileage for a year. On January <math>1</math> Pete sets the pedometer to <math>00000</math>. During the year, the pedometer flips from <math>99999</math> to <math>00000</math> forty-four times. On December <math>31</math> the pedometer reads <math>50000</math>. Pete takes <math>1800</math> steps per mile. Which of the following is closest to the number of miles Pete walked during the year?
 +
 +
<math>\textbf{(A)}\ 2500 \qquad \textbf{(B)}\ 3000 \qquad \textbf{(C)}\ 3500 \qquad \textbf{(D)}\ 4000 \qquad \textbf{(E)}\ 4500</math>
  
 
([[2008 AMC 12B Problems/Problem 6|Solution]])
 
([[2008 AMC 12B Problems/Problem 6|Solution]])
 
==Problem 7==
 
==Problem 7==
 +
For real numbers <math>a</math> and <math>b</math>, define <math>a\</math>b = (a - b)^2<math>. What is </math>(x - y)^2\<math>(y - x)^2</math>?
 +
 +
<math>\textbf{(A)}\ 0 \qquad \textbf{(B)}\ x^2 + y^2 \qquad \textbf{(C)}\ 2x^2 \qquad \textbf{(D)}\ 2y^2 \qquad \textbf{(E)}\ 4xy</math>
  
 
([[2008 AMC 12B Problems/Problem 7|Solution]])
 
([[2008 AMC 12B Problems/Problem 7|Solution]])
 
==Problem 8==
 
==Problem 8==
 +
Points <math>B</math> and <math>C</math> lie on <math>\overline{AD}</math>. The length of <math>\overline{AB}</math> is <math>4</math> times the length of <math>\overline{BD}</math>, and the length of <math>\overline{AC}</math> is <math>9</math> times the length of <math>\overline{CD}</math>. The length of <math>\overline{BC}</math> is what fraction of the length of <math>\overline{AD}</math>?
 +
 +
<math>\textbf{(A)}\ \frac {1}{36} \qquad \textbf{(B)}\ \frac {1}{13} \qquad \textbf{(C)}\ \frac {1}{10} \qquad \textbf{(D)}\ \frac {5}{36} \qquad \textbf{(E)}\ \frac {1}{5}</math>
  
 
([[2008 AMC 12B Problems/Problem 8|Solution]])
 
([[2008 AMC 12B Problems/Problem 8|Solution]])
 
==Problem 9==
 
==Problem 9==
 +
Points <math>A</math> and <math>B</math> are on a circle of radius <math>5</math> and <math>AB = 6</math>. Point <math>C</math> is the midpoint of the minor arc <math>AB</math>. What is the length of the line segment <math>AC</math>?
 +
 +
<math>\textbf{(A)}\ \sqrt {10} \qquad \textbf{(B)}\ \frac {7}{2} \qquad \textbf{(C)}\ \sqrt {14} \qquad \textbf{(D)}\ \sqrt {15} \qquad \textbf{(E)}\ 4</math>
  
 
([[2008 AMC 12B Problems/Problem 9|Solution]])
 
([[2008 AMC 12B Problems/Problem 9|Solution]])
 
==Problem 10==
 
==Problem 10==
 +
Bricklayer Brenda would take <math>9</math> hours to build a chimney alone, and bricklayer Brandon would take <math>10</math> hours to build it alone. When they work together they talk a lot, and their combined output is decreased by <math>10</math> bricks per hour. Working together, they build the chimney in <math>5</math> hours. How many bricks are in the chimney?
 +
 +
<math>\textbf{(A)}\ 500 \qquad \textbf{(B)}\ 900 \qquad \textbf{(C)}\ 950 \qquad \textbf{(D)}\ 1000 \qquad \textbf{(E)}\ 1900</math>
  
 
([[2008 AMC 12B Problems/Problem 10|Solution]])
 
([[2008 AMC 12B Problems/Problem 10|Solution]])
Line 42: Line 96:
 
([[2008 AMC 12B Problems/Problem 14|Solution]])
 
([[2008 AMC 12B Problems/Problem 14|Solution]])
 
==Problem 15==
 
==Problem 15==
 +
On each side of a unit square, an equilateral triangle of side length 1 is constructed. On each new side of each equilateral triangle, another equilateral triangle of side length 1 is constructed. The interiors of the square and the 12 triangles have no points in common. Let <math>R</math> be the region formed by the union of the square and all the triangles, and <math>S</math> be the smallest convex polygon that contains <math>R</math>. What is the area of the region that is inside <math>S</math> but outside <math>R</math>?
 +
 +
<math>\textbf{(A)} \; \frac {1}{4} \qquad \textbf{(B)} \; \frac {\sqrt {2}}{4} \qquad \textbf{(C)} \; 1 \qquad \textbf{(D)} \; \sqrt {3} \qquad \textbf{(E)} \; 2 \sqrt {3}</math>
  
 
([[2008 AMC 12B Problems/Problem 15|Solution]])
 
([[2008 AMC 12B Problems/Problem 15|Solution]])
 
==Problem 16==
 
==Problem 16==
 +
A rectangular floor measures <math>a</math> by <math>b</math> feet, where <math>a</math> and <math>b</math> are positive integers with <math>b > a</math>. An artist paints a rectangle on the floor with the sides of the rectangle parallel to the sides of the floor. The unpainted part of the floor forms a border of width <math>1</math> foot around the painted rectangle and occupies half of the area of the entire floor. How many possibilities are there for the ordered pair <math>(a,b)</math>?
 +
 +
<math>\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5</math>
  
 
([[2008 AMC 12B Problems/Problem 16|Solution]])
 
([[2008 AMC 12B Problems/Problem 16|Solution]])
Line 51: Line 111:
 
([[2008 AMC 12B Problems/Problem 17|Solution]])
 
([[2008 AMC 12B Problems/Problem 17|Solution]])
 
==Problem 18==
 
==Problem 18==
 +
A pyramid has a square base <math>ABCD</math> and vertex <math>E</math>.  The area of square <math>ABCD</math> is <math>196</math>, and the areas of <math>\triangle ABE</math> and <math>\triangle CDE</math> are <math>105</math> and <math>91</math>, respectively.  What is the volume of the pyramid?
 +
 +
 +
<math>\textbf{(A)}\ 392 \qquad \textbf{(B)}\ 196\sqrt {6} \qquad \textbf{(C)}\ 392\sqrt {2} \qquad \textbf{(D)}\ 392\sqrt {3} \qquad \textbf{(E)}\ 784</math>
  
 
([[2008 AMC 12B Problems/Problem 18|Solution]])
 
([[2008 AMC 12B Problems/Problem 18|Solution]])
 
==Problem 19==
 
==Problem 19==
 +
A function <math>f</math> is defined by <math>f(z) = (4 + i) z^2 + \alpha z + \gamma</math> for all complex numbers <math>z</math>, where <math>\alpha</math> and <math>\gamma</math> are complex numbers and <math>i^2 = - 1</math>. Suppose that <math>f(1)</math> and <math>f(i)</math> are both real. What is the smallest possible value of <math>| \alpha | + |\gamma |</math>
 +
 +
<math>\textbf{(A)} \; 1 \qquad \textbf{(B)} \; \sqrt {2} \qquad \textbf{(C)} \; 2 \qquad \textbf{(D)} \; 2 \sqrt {2} \qquad \textbf{(E)} \; 4 \qquad</math>
  
 
([[2008 AMC 12B Problems/Problem 19|Solution]])
 
([[2008 AMC 12B Problems/Problem 19|Solution]])
 
==Problem 20==
 
==Problem 20==
 +
Michael walks at the rate of <math>5</math> feet per second on a long straight path. Trash pails are located every <math>200</math> feet along the path. A garbage truck travels at <math>10</math> feet per second in the same direction as Michael and stops for <math>30</math> seconds at each pail. As Michael passes a pail, he notices the truck ahead of him just leaving the next pail. How many times will Michael and the truck meet?
 +
 +
<math>\textbf{(A)}\ 4\qquad \textbf{(B)}\ 5\qquad \textbf{(C)}\ 6\qquad \textbf{(D)}\ 7\qquad \textbf{(E)}\ 8</math>
  
 
([[2008 AMC 12B Problems/Problem 20|Solution]])
 
([[2008 AMC 12B Problems/Problem 20|Solution]])
 
==Problem 21==
 
==Problem 21==
 +
Two circles of radius 1 are to be constructed as follows. The center of circle <math>A</math> is chosen uniformly and at random from the line segment joining <math>(0,0)</math> and <math>(2,0)</math>. The center of circle <math>B</math> is chosen uniformly and at random, and independently of the first choice, from the line segment joining <math>(0,1)</math> to <math>(2,1)</math>. What is the probability that circles <math>A</math> and <math>B</math> intersect?
 +
 +
<math>\textbf{(A)} \; \frac {2 + \sqrt {2}}{4} \qquad \textbf{(B)} \; \frac {3\sqrt {3} + 2}{8} \qquad \textbf{(C)} \; \frac {2 \sqrt {2} - 1}{2} \qquad \textbf{(D)} \; \frac {2 + \sqrt {3}}{4} \qquad \textbf{(E)} \; \frac {4 \sqrt {3} - 3}{4}</math>
  
 
([[2008 AMC 12B Problems/Problem 21|Solution]])
 
([[2008 AMC 12B Problems/Problem 21|Solution]])
 
==Problem 22==
 
==Problem 22==
 +
A parking lot has 16 spaces in a row. Twelve cars arrive, each of which requires one parking space, and their drivers chose spaces at random from among the available spaces. Auntie Em then arrives in her SUV, which requires 2 adjacent spaces. What is the probability that she is able to park?
 +
 +
<math>\textbf{(A)} \; \frac {11}{20} \qquad \textbf{(B)} \; \frac {4}{7} \qquad \textbf{(C)} \; \frac {81}{140} \qquad \textbf{(D)} \; \frac {3}{5} \qquad \textbf{(E)} \; \frac {17}{28}</math>
  
 
([[2008 AMC 12B Problems/Problem 22|Solution]])
 
([[2008 AMC 12B Problems/Problem 22|Solution]])
 
==Problem 23==
 
==Problem 23==
 +
The sum of the base-<math>10</math> logarithms of the divisors of <math>10^n</math> is <math>792</math>. What is <math>n</math>?
 +
 +
<math>\textbf{(A)}\ 11\qquad \textbf{(B)}\ 12\qquad \textbf{(C)}\ 13\qquad \textbf{(D)}\ 14\qquad \textbf{(E)}\ 15</math>
  
 
([[2008 AMC 12B Problems/Problem 23|Solution]])
 
([[2008 AMC 12B Problems/Problem 23|Solution]])
 
==Problem 24==
 
==Problem 24==
 +
Let <math>A_0 = (0,0)</math>. Distinct points <math>A_1,A_2,\ldots</math> lie on the <math>x</math>-axis, and distinct points <math>B_1,B_2,\ldots</math> lie on the graph of <math>y = \sqrt {x}</math>. For every positive integer <math>n</math>, <math>A_{n - 1}B_nA_n</math> is an equilateral triangle. What is the least <math>n</math> for which the length <math>A_0A_n\ge100</math>?
 +
 +
<math>\textbf{(A)}\ 13\qquad \textbf{(B)}\ 15\qquad \textbf{(C)}\ 17\qquad \textbf{(D)}\ 19\qquad \textbf{(E)}\ 21</math>
  
 
([[2008 AMC 12B Problems/Problem 24|Solution]])
 
([[2008 AMC 12B Problems/Problem 24|Solution]])
 
==Problem 25==
 
==Problem 25==
 +
Let <math>ABCD</math> be a trapezoid with <math>AB||CD</math>, <math>AB = 11</math>, <math>BC = 5</math>, <math>CD = 19</math>, and <math>DA = 7</math>. Bisectors of <math>\angle A</math> and <math>\angle D</math> meet at <math>P</math>, and bisectors of <math>\angle B</math> and <math>\angle C</math> meet at <math>Q</math>. What is the area of hexagon <math>ABQCDP</math>?
 +
 +
<math>\textbf{(A)}\ 28\sqrt {3}\qquad \textbf{(B)}\ 30\sqrt {3}\qquad \textbf{(C)}\ 32\sqrt {3}\qquad \textbf{(D)}\ 35\sqrt {3}\qquad \textbf{(E)}\ 36\sqrt {3}</math>
  
 
([[2008 AMC 12B Problems/Problem 25|Solution]])
 
([[2008 AMC 12B Problems/Problem 25|Solution]])
  
 
{{empty}}
 
{{empty}}

Revision as of 08:54, 29 February 2008

Problem 1

A basketball player made $5$ baskets during a game. Each basket was worth either $2$ or $3$ points. How many different numbers could represent the total points scored by the player?

$\textbf{(A)}\ 2 \qquad \textbf{(B)}\ 3 \qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ 5 \qquad \textbf{(E)}\ 6$

(Solution)

Problem 2

A $4\times 4$ block of calendar dates is shown. The order of the numbers in the second row is to be reversed. Then the order of the numbers in the fourth row is to be reversed. Finally, the numbers on each diagonal are to be added. What will be the positive difference between the two diagonal sums?

$\setlength{\unitlength}{5mm} \begin{picture}(4,4)(0,0) \multiput(0,0)(0,1){5}{\line(1,0){4}} \multiput(0,0)(1,0){5}{\line(0,1){4}} \put(0,3){\makebox(1,1){\footnotesize{1}}} \put(1,3){\makebox(1,1){\footnotesize{2}}} \put(2,3){\makebox(1,1){\footnotesize{3}}} \put(3,3){\makebox(1,1){\footnotesize{4}}} \put(0,2){\makebox(1,1){\footnotesize{8}}} \put(1,2){\makebox(1,1){\footnotesize{9}}} \put(2,2){\makebox(1,1){\footnotesize{10}}} \put(3,2){\makebox(1,1){\footnotesize{11}}} \put(0,1){\makebox(1,1){\footnotesize{15}}} \put(1,1){\makebox(1,1){\footnotesize{16}}} \put(2,1){\makebox(1,1){\footnotesize{17}}} \put(3,1){\makebox(1,1){\footnotesize{18}}} \put(0,0){\makebox(1,1){\footnotesize{22}}} \put(1,0){\makebox(1,1){\footnotesize{23}}} \put(2,0){\makebox(1,1){\footnotesize{24}}} \put(3,0){\makebox(1,1){\footnotesize{25}}} \end{picture}$

$\textbf{(A)}\ 2 \qquad \textbf{(B)}\ 4 \qquad \textbf{(C)}\ 6 \qquad \textbf{(D)}\ 8 \qquad \textbf{(E)}\ 10$

(Solution)

Problem 3

A semipro baseball league has teams with $21$ players each. League rules state that a player must be paid at least $15,000$ dollars, and that the total of all players' salaries for each team cannot exceed $700,000$ dollars. What is the maximum possiblle salary, in dollars, for a single player?

$\textbf{(A)}\ 270,000 \qquad \textbf{(B)}\ 385,000 \qquad \textbf{(C)}\ 400,000 \qquad \textbf{(D)}\ 430,000 \qquad \textbf{(E)}\ 700,000$

(Solution)

Problem 4

On circle $O$, points $C$ and $D$ are on the same side of diameter $\overline{AB}$, $\angle AOC = 30^\circ$, and $\angle DOB = 45^\circ$. What is the ratio of the area of the smaller sector $COD$ to the area of the circle?

[asy] unitsize(6mm); defaultpen(linewidth(0.7)+fontsize(8pt));  pair C = 3*dir (30); pair D = 3*dir (135); pair A = 3*dir (0); pair B = 3*dir(180); pair O = (0,0); draw (Circle ((0, 0), 3)); label ("\(C\)", C, NE); label ("\(D\)", D, NW); label ("\(B\)", B, W); label ("\(A\)", A, E); label ("\(O\)", O, S); label ("\(45^\circ\)", (-0.3,0.1), WNW); label ("\(30^\circ\)", (0.5,0.1), ENE); draw (A--B); draw (O--D); draw (O--C); [/asy]

$\textbf{(A)}\ \frac {2}{9} \qquad \textbf{(B)}\ \frac {1}{4} \qquad \textbf{(C)}\ \frac {5}{18} \qquad \textbf{(D)}\ \frac {7}{24} \qquad \textbf{(E)}\ \frac {3}{10}$

(Solution)

Problem 5

A class collects $50$ dollars to buy flowers for a classmate who is in the hospital. Roses cost $3$ dollars each, and carnations cost $2$ dollars each. No other flowers are to be used. How many different bouquets could be purchased for exactly $50$ dollars?

$\textbf{(A)}\ 1 \qquad \textbf{(B)}\ 7 \qquad \textbf{(C)}\ 9 \qquad \textbf{(D)}\ 16 \qquad \textbf{(E)}\ 17$

(Solution)

Problem 6

Postman Pete has a pedometer to count his steps. The pedometer records up to $99999$ steps, then flips over to $00000$ on the next step. Pete plans to determine his mileage for a year. On January $1$ Pete sets the pedometer to $00000$. During the year, the pedometer flips from $99999$ to $00000$ forty-four times. On December $31$ the pedometer reads $50000$. Pete takes $1800$ steps per mile. Which of the following is closest to the number of miles Pete walked during the year?

$\textbf{(A)}\ 2500 \qquad \textbf{(B)}\ 3000 \qquad \textbf{(C)}\ 3500 \qquad \textbf{(D)}\ 4000 \qquad \textbf{(E)}\ 4500$

(Solution)

Problem 7

For real numbers $a$ and $b$, define $a$b = (a - b)^2$. What is$(x - y)^2\$(y - x)^2$?

$\textbf{(A)}\ 0 \qquad \textbf{(B)}\ x^2 + y^2 \qquad \textbf{(C)}\ 2x^2 \qquad \textbf{(D)}\ 2y^2 \qquad \textbf{(E)}\ 4xy$

(Solution)

Problem 8

Points $B$ and $C$ lie on $\overline{AD}$. The length of $\overline{AB}$ is $4$ times the length of $\overline{BD}$, and the length of $\overline{AC}$ is $9$ times the length of $\overline{CD}$. The length of $\overline{BC}$ is what fraction of the length of $\overline{AD}$?

$\textbf{(A)}\ \frac {1}{36} \qquad \textbf{(B)}\ \frac {1}{13} \qquad \textbf{(C)}\ \frac {1}{10} \qquad \textbf{(D)}\ \frac {5}{36} \qquad \textbf{(E)}\ \frac {1}{5}$

(Solution)

Problem 9

Points $A$ and $B$ are on a circle of radius $5$ and $AB = 6$. Point $C$ is the midpoint of the minor arc $AB$. What is the length of the line segment $AC$?

$\textbf{(A)}\ \sqrt {10} \qquad \textbf{(B)}\ \frac {7}{2} \qquad \textbf{(C)}\ \sqrt {14} \qquad \textbf{(D)}\ \sqrt {15} \qquad \textbf{(E)}\ 4$

(Solution)

Problem 10

Bricklayer Brenda would take $9$ hours to build a chimney alone, and bricklayer Brandon would take $10$ hours to build it alone. When they work together they talk a lot, and their combined output is decreased by $10$ bricks per hour. Working together, they build the chimney in $5$ hours. How many bricks are in the chimney?

$\textbf{(A)}\ 500 \qquad \textbf{(B)}\ 900 \qquad \textbf{(C)}\ 950 \qquad \textbf{(D)}\ 1000 \qquad \textbf{(E)}\ 1900$

(Solution)

Problem 11

(Solution)

Problem 12

(Solution)

Problem 13

(Solution)

Problem 14

(Solution)

Problem 15

On each side of a unit square, an equilateral triangle of side length 1 is constructed. On each new side of each equilateral triangle, another equilateral triangle of side length 1 is constructed. The interiors of the square and the 12 triangles have no points in common. Let $R$ be the region formed by the union of the square and all the triangles, and $S$ be the smallest convex polygon that contains $R$. What is the area of the region that is inside $S$ but outside $R$?

$\textbf{(A)} \; \frac {1}{4} \qquad \textbf{(B)} \; \frac {\sqrt {2}}{4} \qquad \textbf{(C)} \; 1 \qquad \textbf{(D)} \; \sqrt {3} \qquad \textbf{(E)} \; 2 \sqrt {3}$

(Solution)

Problem 16

A rectangular floor measures $a$ by $b$ feet, where $a$ and $b$ are positive integers with $b > a$. An artist paints a rectangle on the floor with the sides of the rectangle parallel to the sides of the floor. The unpainted part of the floor forms a border of width $1$ foot around the painted rectangle and occupies half of the area of the entire floor. How many possibilities are there for the ordered pair $(a,b)$?

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5$

(Solution)

Problem 17

(Solution)

Problem 18

A pyramid has a square base $ABCD$ and vertex $E$. The area of square $ABCD$ is $196$, and the areas of $\triangle ABE$ and $\triangle CDE$ are $105$ and $91$, respectively. What is the volume of the pyramid?


$\textbf{(A)}\ 392 \qquad \textbf{(B)}\ 196\sqrt {6} \qquad \textbf{(C)}\ 392\sqrt {2} \qquad \textbf{(D)}\ 392\sqrt {3} \qquad \textbf{(E)}\ 784$

(Solution)

Problem 19

A function $f$ is defined by $f(z) = (4 + i) z^2 + \alpha z + \gamma$ for all complex numbers $z$, where $\alpha$ and $\gamma$ are complex numbers and $i^2 = - 1$. Suppose that $f(1)$ and $f(i)$ are both real. What is the smallest possible value of $| \alpha | + |\gamma |$

$\textbf{(A)} \; 1 \qquad \textbf{(B)} \; \sqrt {2} \qquad \textbf{(C)} \; 2 \qquad \textbf{(D)} \; 2 \sqrt {2} \qquad \textbf{(E)} \; 4 \qquad$

(Solution)

Problem 20

Michael walks at the rate of $5$ feet per second on a long straight path. Trash pails are located every $200$ feet along the path. A garbage truck travels at $10$ feet per second in the same direction as Michael and stops for $30$ seconds at each pail. As Michael passes a pail, he notices the truck ahead of him just leaving the next pail. How many times will Michael and the truck meet?

$\textbf{(A)}\ 4\qquad \textbf{(B)}\ 5\qquad \textbf{(C)}\ 6\qquad \textbf{(D)}\ 7\qquad \textbf{(E)}\ 8$

(Solution)

Problem 21

Two circles of radius 1 are to be constructed as follows. The center of circle $A$ is chosen uniformly and at random from the line segment joining $(0,0)$ and $(2,0)$. The center of circle $B$ is chosen uniformly and at random, and independently of the first choice, from the line segment joining $(0,1)$ to $(2,1)$. What is the probability that circles $A$ and $B$ intersect?

$\textbf{(A)} \; \frac {2 + \sqrt {2}}{4} \qquad \textbf{(B)} \; \frac {3\sqrt {3} + 2}{8} \qquad \textbf{(C)} \; \frac {2 \sqrt {2} - 1}{2} \qquad \textbf{(D)} \; \frac {2 + \sqrt {3}}{4} \qquad \textbf{(E)} \; \frac {4 \sqrt {3} - 3}{4}$

(Solution)

Problem 22

A parking lot has 16 spaces in a row. Twelve cars arrive, each of which requires one parking space, and their drivers chose spaces at random from among the available spaces. Auntie Em then arrives in her SUV, which requires 2 adjacent spaces. What is the probability that she is able to park?

$\textbf{(A)} \; \frac {11}{20} \qquad \textbf{(B)} \; \frac {4}{7} \qquad \textbf{(C)} \; \frac {81}{140} \qquad \textbf{(D)} \; \frac {3}{5} \qquad \textbf{(E)} \; \frac {17}{28}$

(Solution)

Problem 23

The sum of the base-$10$ logarithms of the divisors of $10^n$ is $792$. What is $n$?

$\textbf{(A)}\ 11\qquad \textbf{(B)}\ 12\qquad \textbf{(C)}\ 13\qquad \textbf{(D)}\ 14\qquad \textbf{(E)}\ 15$

(Solution)

Problem 24

Let $A_0 = (0,0)$. Distinct points $A_1,A_2,\ldots$ lie on the $x$-axis, and distinct points $B_1,B_2,\ldots$ lie on the graph of $y = \sqrt {x}$. For every positive integer $n$, $A_{n - 1}B_nA_n$ is an equilateral triangle. What is the least $n$ for which the length $A_0A_n\ge100$?

$\textbf{(A)}\ 13\qquad \textbf{(B)}\ 15\qquad \textbf{(C)}\ 17\qquad \textbf{(D)}\ 19\qquad \textbf{(E)}\ 21$

(Solution)

Problem 25

Let $ABCD$ be a trapezoid with $AB||CD$, $AB = 11$, $BC = 5$, $CD = 19$, and $DA = 7$. Bisectors of $\angle A$ and $\angle D$ meet at $P$, and bisectors of $\angle B$ and $\angle C$ meet at $Q$. What is the area of hexagon $ABQCDP$?

$\textbf{(A)}\ 28\sqrt {3}\qquad \textbf{(B)}\ 30\sqrt {3}\qquad \textbf{(C)}\ 32\sqrt {3}\qquad \textbf{(D)}\ 35\sqrt {3}\qquad \textbf{(E)}\ 36\sqrt {3}$

(Solution)

This is an empty template page which needs to be filled. You can help us out by finding the needed content and editing it in. Thanks.