Difference between revisions of "2010 AIME I Problems/Problem 8"
(→Solution 2) |
(→Solution 2) |
||
Line 17: | Line 17: | ||
== Solution 2 == | == Solution 2 == | ||
− | When observing the equation <math>\lfloor x \rfloor ^2 + \lfloor y \rfloor ^2 = 25</math>, it is easy to see that it is | + | When observing the equation <math>\lfloor x \rfloor ^2 + \lfloor y \rfloor ^2 = 25</math>, it is easy to see that it is a circle graph. So, we can draw a coordinate plane and find some points. |
− | In quadrant <math>1</math>, <math>x < 6 </math> and <math>y < 6 </math>. Note that <math>\lfloor 5.999...\rfloor = 5</math>, but if we add more <math>9's</math> after the <math>5</math>, it will get infinitely close to <math>6</math>, so we can use <math>6</math> as a bounding line. Also, with the same logic, when <math>x = 6</math>, <math>y = 1</math> (the equal sign represents as <math>x</math> approaches..., not | + | In quadrant <math>1</math>, <math>x < 6 </math> and <math>y < 6 </math>. Note that <math>\lfloor 5.999...\rfloor = 5</math>, but if we add more <math>9's</math> after the <math>5</math>, it will get infinitely close to <math>6</math>, so we can use <math>6</math> as a bounding line. Also, with the same logic, when <math>x = 6</math>, <math>y = 1</math> (the equal sign represents as <math>x</math> approaches..., not equal to...) So, in quadrant one, we have points <math>(6,1)</math> and <math>(1,6)</math>. |
− | Moving to quadrant <math>2</math>, we must note that <math>\lfloor -4.999...\rfloor = -5</math>, so the circle will not be centered at <math>(0,0)</math>. In quadrant 2, <math>y</math> is still positive, so we can have <math>y = 1</math>. When <math>y = 1</math>, <math>x = -5</math>, so we have our next point <math>(-5,1)</math>. With this method, other points can be found in | + | Moving to quadrant <math>2</math>, we must note that <math>\lfloor -4.999...\rfloor = -5</math>, so the circle will not be centered at <math>(0,0)</math>. In quadrant 2, <math>y</math> is still positive, so we can have <math>y = 1</math>. When <math>y = 1</math>, <math>x = -5</math>, so we have our next point <math>(-5,1)</math>. With this method, other points can be found in quadrants <math>3</math> and <math>4</math>. |
− | Additionally, <math>3 ^2 + 4 ^2 = 5 ^2</math>, and with the same approaching limit, we know that quadrant <math>1</math> also has lattice points <math>(4,5)</math> and <math>(5,4)</math>. We need a point that passes through the center | + | Additionally, <math>3 ^2 + 4 ^2 = 5 ^2</math>, and with the same approaching limit, we know that quadrant <math>1</math> also has lattice points <math>(4,5)</math> and <math>(5,4)</math>. We need a point that passes through the circle's center (we don't need to find the center). If we focus on <math>(5,4)</math>, the "opposite" point is <math>(-4,-3)</math> located in quadrant 3. |
− | Using the distance formula, we find that the distance between the two points is <math>\sqrt {130}</math>. Since the line | + | Using the distance formula, we find that the distance between the two points is <math>\sqrt {130}</math>. Since the line connecting those two points passes through the circle's center, it is the diameter. So, the radius can be found by dividing <math>\sqrt {130}</math> by <math>2</math> to get <math>\frac {\sqrt {130}}2</math>, and <math>m+n=130 + 2 = \boxed{132}</math>. |
~hwan | ~hwan | ||
+ | ~edited by ALANARCHERMAN | ||
== See Also == | == See Also == |
Latest revision as of 20:18, 29 November 2024
Contents
Problem
For a real number , let denote the greatest integer less than or equal to . Let denote the region in the coordinate plane consisting of points such that . The region is completely contained in a disk of radius (a disk is the union of a circle and its interior). The minimum value of can be written as , where and are integers and is not divisible by the square of any prime. Find .
Solution
The desired region consists of 12 boxes, whose lower-left corners are integers solutions of , namely Since the points themselves are symmetric about , the boxes are symmetric about . The distance from to the furthest point on a box that lays on an axis, for instance , is The distance from to the furthest point on a box in the middle of a quadrant, for instance , is The latter is the larger, and is , giving an answer of .
Solution 2
When observing the equation , it is easy to see that it is a circle graph. So, we can draw a coordinate plane and find some points.
In quadrant , and . Note that , but if we add more after the , it will get infinitely close to , so we can use as a bounding line. Also, with the same logic, when , (the equal sign represents as approaches..., not equal to...) So, in quadrant one, we have points and .
Moving to quadrant , we must note that , so the circle will not be centered at . In quadrant 2, is still positive, so we can have . When , , so we have our next point . With this method, other points can be found in quadrants and .
Additionally, , and with the same approaching limit, we know that quadrant also has lattice points and . We need a point that passes through the circle's center (we don't need to find the center). If we focus on , the "opposite" point is located in quadrant 3.
Using the distance formula, we find that the distance between the two points is . Since the line connecting those two points passes through the circle's center, it is the diameter. So, the radius can be found by dividing by to get , and .
~hwan ~edited by ALANARCHERMAN
See Also
2010 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.