Difference between revisions of "2008 AMC 12A Problems/Problem 24"
Chickendude (talk | contribs) (Added Solution - Need help on asymptote) |
(→Solution: condense + formatting) |
||
Line 5: | Line 5: | ||
==Solution== | ==Solution== | ||
− | <asy> | + | <center><asy> |
unitsize(12mm); | unitsize(12mm); | ||
pair C=(0,0), B=(4 * dir(60)), A = (8,0), D=(2 * dir(60)); | pair C=(0,0), B=(4 * dir(60)), A = (8,0), D=(2 * dir(60)); | ||
pair E=(1,0), F=(2,0); | pair E=(1,0), F=(2,0); | ||
− | |||
draw(C--B--A--C); | draw(C--B--A--C); | ||
− | draw(A--D); | + | draw(A--D);draw(D--E);draw(B--F); |
− | draw(D--E); | + | dot(A);dot(B);dot(C);dot(D);dot(E);dot(F); |
− | draw(B--F); | + | label("\(C\)",C,SW); |
− | + | label("\(B\)",B,N); | |
− | dot(A); | + | label("\(A\)",A,SE); |
− | dot(B); | + | label("\(D\)",D,NW); |
− | dot(C); | + | label("\(E\)",E,S); |
− | dot(D); | + | label("\(F\)",F,S); |
− | dot(E); | + | label("\(60^\circ\)",C+(.1,.1),ENE); |
− | dot(F); | + | label("\(2\)",1*dir(60),NW); |
− | + | label("\(2\)",3*dir(60),NW); | |
− | label("C",C,SW); | + | label("\(\theta\)",(7,.4)); |
− | label("B",B,N); | + | label("\(1\)",(.5,0),S); |
− | label("A",A,SE); | + | label("\(1\)",(1.5,0),S); |
− | label("D",D,NW); | + | label("\(x-2\)",(5,0),S); |
− | label("E",E,S); | + | </asy></center> |
− | label("F",F,S); | ||
− | label(" | ||
− | label("2",1*dir(60),NW); | ||
− | label("2",3*dir(60),NW); | ||
− | label(" | ||
− | label("1",(.5,0),S); | ||
− | label("1",(1.5,0),S); | ||
− | label("x-2",(5,0),S); | ||
− | </asy> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | <math>\frac{ | + | Let <math>x = CA</math>. Then <math>\tan\theta = \tan(\angle BAF - \angle DAE)</math>, and since <math>\tan\angle BAF = \frac{2\sqrt{3}}{x-2}</math> and <math>\tan\angle DAE = \frac{\sqrt{3}}{x-1}</math>, we have |
− | < | + | <cmath>\tan\theta = \frac{\frac{2\sqrt{3}}{x-2} - \frac{\sqrt{3}}{x-1}}{1 + \frac{2\sqrt{3}}{x-2}\cdot\frac{\sqrt{3}}{x-1}}= \frac{x\sqrt{3}}{x^2-3x+8}</cmath> |
− | <math>\ | + | With calculus, taking the [[derivative]] and setting equal to zero will give the maximum value of <math>\tan \theta</math>. Otherwise, we can apply [[AM-GM]]: |
− | < | + | <cmath> |
+ | \begin{align*} | ||
+ | \frac{x^2 - 3x + 8}{x} = \left(x + \frac{8}{x}\right) -3 &\geq 2\sqrt{x \cdot \frac 8x} - 3 = 4\sqrt{2} - 3\\ | ||
+ | \frac{x}{x^2 - 3x + 8} &\leq \frac{1}{4\sqrt{2}-3}\\ | ||
+ | \frac{x\sqrt{3}}{x^2 - 3x + 8} = \tan \theta &\leq \frac{\sqrt{3}}{4\sqrt{2}-3}</cmath> | ||
− | + | Thus, the minimum is at | |
− | <math>\frac{\sqrt{3}}{4\sqrt{2}-3} \Rightarrow \mathbf{(D)}</math> | + | <math>\frac{\sqrt{3}}{4\sqrt{2}-3} \Rightarrow \mathbf{(D)}</math>. |
==See Also== | ==See Also== | ||
{{AMC12 box|year=2008|ab=A|num-b=23|num-a=25}} | {{AMC12 box|year=2008|ab=A|num-b=23|num-a=25}} |
Revision as of 12:17, 24 February 2008
Problem
Triangle has and . Point is the midpoint of . What is the largest possible value of ?
Solution
Let . Then , and since and , we have
With calculus, taking the derivative and setting equal to zero will give the maximum value of . Otherwise, we can apply AM-GM:
\begin{align*} \frac{x^2 - 3x + 8}{x} = \left(x + \frac{8}{x}\right) -3 &\geq 2\sqrt{x \cdot \frac 8x} - 3 = 4\sqrt{2} - 3\\ \frac{x}{x^2 - 3x + 8} &\leq \frac{1}{4\sqrt{2}-3}\\ \frac{x\sqrt{3}}{x^2 - 3x + 8} = \tan \theta &\leq \frac{\sqrt{3}}{4\sqrt{2}-3} (Error compiling LaTeX. Unknown error_msg)
Thus, the minimum is at .
See Also
2008 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |