Difference between revisions of "2008 AMC 12A Problems/Problem 24"

m (typo)
Line 7: Line 7:
  
 
==See Also==
 
==See Also==
{{AMC12 box|year=2008|ab=A|num-b=22|num-a=24}}
+
{{AMC12 box|year=2008|ab=A|num-b=23|num-a=25}}

Revision as of 21:43, 22 February 2008

Problem

Triangle $ABC$ has $\angle C = 60^{\circ}$ and $BC = 4$. Point $D$ is the midpoint of $BC$. What is the largest possible value of $\tan{\angle BAD}$?

$\textbf{(A)} \ \frac {\sqrt {3}}{6} \qquad \textbf{(B)} \ \frac {\sqrt {3}}{3} \qquad \textbf{(C)} \ \frac {\sqrt {3}}{2\sqrt {2}} \qquad \textbf{(D)} \ \frac {\sqrt {3}}{4\sqrt {2} - 3} \qquad \textbf{(E)}\ 1$

Solution

See Also

2008 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions