Difference between revisions of "2008 AMC 12A Problems/Problem 15"
(New page: ==Problem== Let <math>k={2008}^{2}+{2}^{2008}</math>. What is the units digit of <math>k^2+2^k</math>? <math>\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 4 \qquad \textbf{(...) |
|||
Line 9: | Line 9: | ||
So, <math>k^2 \equiv 0 \pmod{10}</math>. Since <math>k \equiv 2008^2+2^{2008} \equiv 0 \pmod{4}</math>, <math>2^k \equiv 2^4 \equiv 6 \pmod{10}</math>. | So, <math>k^2 \equiv 0 \pmod{10}</math>. Since <math>k \equiv 2008^2+2^{2008} \equiv 0 \pmod{4}</math>, <math>2^k \equiv 2^4 \equiv 6 \pmod{10}</math>. | ||
− | Therefore, <math>k^2+2^k \equiv 0+6 \equiv 6 \pmod{10}</math>. So the units digit is <math>6 \Rightarrow D</math>. | + | Therefore, <math>k^2+2^k \equiv 0+6 \equiv 6 \pmod{10}</math>. So the units digit is <math>6 \Rightarrow D</math>. |
+ | |||
+ | ==See Also== | ||
+ | {{AMC12 box|year=2008|num-b=14|num-a=16|ab=A}} |
Revision as of 22:01, 19 February 2008
Problem
Let . What is the units digit of ?
Solution
.
So, . Since , .
Therefore, . So the units digit is .
See Also
2008 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 14 |
Followed by Problem 16 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |