Difference between revisions of "2008 AMC 12A Problems/Problem 15"

(New page: ==Problem== Let <math>k={2008}^{2}+{2}^{2008}</math>. What is the units digit of <math>k^2+2^k</math>? <math>\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 4 \qquad \textbf{(...)
 
Line 9: Line 9:
 
So, <math>k^2 \equiv 0 \pmod{10}</math>. Since <math>k \equiv 2008^2+2^{2008} \equiv 0 \pmod{4}</math>, <math>2^k \equiv 2^4 \equiv 6 \pmod{10}</math>.  
 
So, <math>k^2 \equiv 0 \pmod{10}</math>. Since <math>k \equiv 2008^2+2^{2008} \equiv 0 \pmod{4}</math>, <math>2^k \equiv 2^4 \equiv 6 \pmod{10}</math>.  
  
Therefore, <math>k^2+2^k \equiv 0+6 \equiv 6 \pmod{10}</math>. So the units digit is <math>6 \Rightarrow D</math>.
+
Therefore, <math>k^2+2^k \equiv 0+6 \equiv 6 \pmod{10}</math>. So the units digit is <math>6 \Rightarrow D</math>.  
 +
 
 +
==See Also==
 +
{{AMC12 box|year=2008|num-b=14|num-a=16|ab=A}}

Revision as of 22:01, 19 February 2008

Problem

Let $k={2008}^{2}+{2}^{2008}$. What is the units digit of $k^2+2^k$?

$\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 2 \qquad \textbf{(C)}\ 4 \qquad \textbf{(D)}\ 6 \qquad \textbf{(E)}\ 8$

Solution

$k \equiv 2008^2 + 2^{2008} \equiv 8^2 + 2^4 \equiv 4+6 \equiv 0 \pmod{10}$.

So, $k^2 \equiv 0 \pmod{10}$. Since $k \equiv 2008^2+2^{2008} \equiv 0 \pmod{4}$, $2^k \equiv 2^4 \equiv 6 \pmod{10}$.

Therefore, $k^2+2^k \equiv 0+6 \equiv 6 \pmod{10}$. So the units digit is $6 \Rightarrow D$.

See Also

2008 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions