Difference between revisions of "2008 AMC 12A Problems/Problem 12"

(New page: ==Problem == A function <math>f</math> has domain <math>[0,2]</math> and range <math>[0,1]</math>. (The notation <math>[a,b]</math> denotes <math>\{x:a \le x \le b \}</math>.) What are the...)
 
m (Solution)
Line 5: Line 5:
  
 
==Solution==
 
==Solution==
<math>g(x)</math> is defined iff <math>f(x + 1)</math> is defined. Thus the domain is all <math>x| x + 1 \in [0,2] \rightarrow x \in [ - 1,1]</math>.  
+
<math>g(x)</math> is defined if <math>f(x + 1)</math> is defined. Thus the domain is all <math>x| x + 1 \in [0,2] \rightarrow x \in [ - 1,1]</math>.  
  
 
Since <math>f(x + 1) \in [0,1]</math>, <math>- f(x + 1) \in [ - 1,0]</math>. Thus <math>g(x) = 1 - f(x + 1) \in [0,1]</math> is the range of <math>g(x)</math>.  
 
Since <math>f(x + 1) \in [0,1]</math>, <math>- f(x + 1) \in [ - 1,0]</math>. Thus <math>g(x) = 1 - f(x + 1) \in [0,1]</math> is the range of <math>g(x)</math>.  
  
Thus the answer is <math>[ - 1,1],[0,1] \Rightarrow B</math>.  
+
Thus the answer is <math>[ - 1,1],[0,1] \Rightarrow B</math>.
  
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2008|ab=A|num-b=11|num-a=13}}
 
{{AMC12 box|year=2008|ab=A|num-b=11|num-a=13}}

Revision as of 23:19, 18 February 2008

Problem

A function $f$ has domain $[0,2]$ and range $[0,1]$. (The notation $[a,b]$ denotes $\{x:a \le x \le b \}$.) What are the domain and range, respectively, of the function $g$ defined by $g(x)=1-f(x+1)$?

$\textbf{(A)}\ [ - 1,1],[ - 1,0] \qquad \textbf{(B)}\ [ - 1,1],[0,1] \qquad \textbf{(C)}\ [0,2],[ - 1,0] \qquad \textbf{(D)}\ [1,3],[ - 1,0] \qquad \textbf{(E)}\ [1,3],[0,1]$

Solution

$g(x)$ is defined if $f(x + 1)$ is defined. Thus the domain is all $x| x + 1 \in [0,2] \rightarrow x \in [ - 1,1]$.

Since $f(x + 1) \in [0,1]$, $- f(x + 1) \in [ - 1,0]$. Thus $g(x) = 1 - f(x + 1) \in [0,1]$ is the range of $g(x)$.

Thus the answer is $[ - 1,1],[0,1] \Rightarrow B$.

See Also

2008 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions