Difference between revisions of "2024 AMC 10B Problems/Problem 9"

(Solution 2)
(Solution 2)
Line 18: Line 18:
  
 
~laythe_enjoyer211, countmath1
 
~laythe_enjoyer211, countmath1
 
==Solution 3==
 
Assume that <math>a = 0</math> and <math>b = -c</math>. Since <math>a^{2}+b^{2}+c^{2} = 30</math>, we can substitute to obtain that <math>2b^{2} = 30</math>, leading us to obtain that <math>b = \sqrt{15}</math> and <math>c = -\sqrt{15}</math>. <math>0\times\sqrt{15} + 0 \times-\sqrt{15} + \sqrt{15}\times-\sqrt{15}</math> = -15, and dividing by 3 gives us <math>\boxed{\textbf{(A)}\ -5}.</math>
 
  
 
==Video Solution 1 by Pi Academy (Fast and Easy ⚡🚀)==
 
==Video Solution 1 by Pi Academy (Fast and Easy ⚡🚀)==

Revision as of 13:25, 14 November 2024

Problem

Real numbers $a, b,$ and $c$ have arithmetic mean 0. The arithmetic mean of $a^2, b^2,$ and $c^2$ is 10. What is the arithmetic mean of $ab, ac,$ and $bc$?

$\textbf{(A) } -5 \qquad\textbf{(B) } -\dfrac{10}{3} \qquad\textbf{(C) } -\dfrac{10}{9} \qquad\textbf{(D) } 0 \qquad\textbf{(E) } \dfrac{10}{9}$

Solution 1

If $\frac{a+b+c}{3} = 0$, that means $a+b+c=0$, and $(a+b+c)^2=0$. Expanding that gives $(a+b+c)^2=a^2+b^2+c^2+2ab+2ac+2bc$. If $\frac{a^2+b^2+c^2}{3} = 10$, then $a^2+b^2+c^2=30$. Thus, we have $0 = 30 + 2ab + 2ac + 2bc$. Arithmetic will give you that $ac + bc + ac = -15$. To find the arithmetic mean, divide that by 3, so $\frac{ac + bc + ac}{3} = \boxed{\textbf{(A) }-5}$

Solution 2

Since $\frac{a+b+c}{3},$ we have $a+b+c=0,$ and \[(a+b+c)^2= a^2 + b^2+c^2+2(ab+ac+bc)=0\]

From the second given, $\frac{a^2+b^2+c^2}{3} = 10$, so $a^2+b^2+c^3=30.$ Substituting this into the above equation, \[2(ab+ac+bc) = (a+b+c)^2 -(a^2+b^2+c^2)=0-30 = -30.\] Thus, $ab+ac+bc=-15,$ and their arithmetic mean is $\frac{-15}{3} = \boxed{\textbf{(A)}\ -5}.$

~laythe_enjoyer211, countmath1

Video Solution 1 by Pi Academy (Fast and Easy ⚡🚀)

https://youtu.be/QLziG_2e7CY?feature=shared

~ Pi Academy

See also

2024 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png