Difference between revisions of "2024 AMC 10B Problems/Problem 24"
Countmath1 (talk | contribs) (→Solution 2 (Specific)) |
Countmath1 (talk | contribs) m (→Remark) |
||
Line 38: | Line 38: | ||
==Remark== | ==Remark== | ||
− | On certain versions of the AMC in China, the problem was | + | On certain versions of the AMC in China, the problem was restated as follows: |
Let<cmath>P(m)=\frac{m}{2}+\frac{m^2}{4}+\frac{m^4}{8}+\frac{m^8}{8}</cmath>How many of the values <math>P(2022)</math>, <math>P(2023)</math>, <math>P(2024)</math>, <math>P(2025),</math> and <math>P(2026)</math> are integers?\\[10pt] | Let<cmath>P(m)=\frac{m}{2}+\frac{m^2}{4}+\frac{m^4}{8}+\frac{m^8}{8}</cmath>How many of the values <math>P(2022)</math>, <math>P(2023)</math>, <math>P(2024)</math>, <math>P(2025),</math> and <math>P(2026)</math> are integers?\\[10pt] |
Revision as of 12:35, 14 November 2024
Contents
Problem
Let How many of the values , , , and are integers?
Solution (The simplest way)
First, we know that and must be integers since they are both divisible by .
Then Let’s consider the remaining two numbers. Since they are not divisible by , the result of the first term must be a certain number , and the result of the second term must be a certain number . Similarly, the remaining two terms must each be . Their sum is , so and are also integers.
Therefore, the answer is .
Solution 2 (Specific)
Take everything modulo 8 and re-write the entire fraction with denominator 8. This means that we're going to transform the fraction as follows : becomes And in order for to be an integer, it's important to note that must be congruent to 0 modulo 8. Moreover, we know that . We can verify it by taking everything modulo 8 :
If , then -> TRUE If , then -> TRUE If , then it is obvious that the entire expression is divisible by 8. Therefore, it is true. If , then . Therefore, -> TRUE Therefore, there are possible values.
Addendum for certain China test papers : Note that . Therefore, taking everything modulo 8, whilst still maintaining the original expression, gives . This is true.
Therefore, there are possible values. ~elpianista227
Remark
On certain versions of the AMC in China, the problem was restated as follows:
LetHow many of the values , , , and are integers?\\[10pt]
By identical reasoning, each term of is an integer, since is even.
Therefore, the answer is .
~iHateGeometry, countmath1
Video Solution 1 by Pi Academy (In Less Than 2 Mins ⚡🚀)
https://youtu.be/Xn1JLzT7mW4?feature=shared
~ Pi Academy
See also
2024 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.