Difference between revisions of "2024 AMC 10B Problems/Problem 9"

(Solution 2: forgor my credit :()
Line 35: Line 35:
  
 
~laythe_enjoyer211
 
~laythe_enjoyer211
 +
 +
==Video Solution 1 by Pi Academy (Fast and Easy ⚡🚀)==
 +
 +
https://youtu.be/QLziG_2e7CY?feature=shared
 +
 +
~ Pi Academy
  
 
==See also==
 
==See also==
 
{{AMC10 box|year=2024|ab=B|num-b=8|num-a=10}}
 
{{AMC10 box|year=2024|ab=B|num-b=8|num-a=10}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 10:01, 14 November 2024

Problem

Real numbers $a, b,$ and $c$ have arithmetic mean 0. The arithmetic mean of $a^2, b^2,$ and $c^2$ is 10. What is the arithmetic mean of $ab, ac,$ and $bc$?

$\textbf{(A) } -5 \qquad\textbf{(B) } -\dfrac{10}{3} \qquad\textbf{(C) } -\dfrac{10}{9} \qquad\textbf{(D) } 0 \qquad\textbf{(E) } \dfrac{10}{9}$

Solution 1

If $\frac{a+b+c}{3} = 0$, that means $a+b+c=0$, and $(a+b+c)^2=0$. Expanding that gives $(a+b+c)^2=a^2+b^2+c^2+2ab+2ac+2bc$. If $\frac{a^2+b^2+c^2}{3} = 10$, then $a^2+b^2+c^2=30$. Thus, we have $0 = 30 + 2ab + 2ac + 2bc$. Arithmetic will give you that $ac + bc + ac = -15$. To find the arithmetic mean, divide that by 3, so $\frac{ac + bc + ac}{3} = \boxed{\textbf{(A) }-5}$

Solution 2

Given: $\frac{a+b+c}{3}=0$

$\Rightarrow a+b+c=0$

Square both sides to get:$(a+b+c)^2=0$

$a^2+b^2+c^2+2(ab+bc+ca)=0 \longrightarrow \raisebox{.5pt}{\textcircled{\raisebox{-.9pt}{1}}}$

Also given: $\frac{a^2+b^2+c^2}{3} = 10$

$\Rightarrow a^2+b^2+c^2 = 30$

Substituting into equation $\raisebox{.5pt}{\textcircled{\raisebox{-.9pt} {1}}}$,

$30+2(ab+bc+ca)=0$

$2(ab+bc+ca)=-30$

$ab+bc+ca=-15$

There are 3 terms, so the mean is: $\frac{ab+bc+ca}{3}$

$= \frac{-15}{3} = \boxed{\textbf{(A) }-5}$

~laythe_enjoyer211

Video Solution 1 by Pi Academy (Fast and Easy ⚡🚀)

https://youtu.be/QLziG_2e7CY?feature=shared

~ Pi Academy

See also

2024 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png