Difference between revisions of "2024 AMC 10B Problems/Problem 25"
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | + | Each of <math>27</math> bricks (right rectangular prisms) has dimensions <math>a \times b \times c</math>, where <math>a</math>, <math>b</math>, and <math>c</math> are pairwise relatively prime positive integers. These bricks are arranged to form a <math>3 \times 3 \times 3</math> block, as shown on the left below. A <math>28</math>th brick with the same dimensions is introduced, and these bricks are reconfigured into a <math>2 \times 2 \times 7</math> block, shown on the right. The new block is <math>1</math> unit taller, <math>1</math> unit wider, and <math>1</math> unit deeper than the old one. What is <math>a + b + c</math>? | |
+ | |||
+ | (diagram pls) | ||
+ | |||
+ | <math> | ||
+ | \textbf{(A) }88 \qquad | ||
+ | \textbf{(B) }89 \qquad | ||
+ | \textbf{(C) }90 \qquad | ||
+ | \textbf{(D) }91 \qquad | ||
+ | \textbf{(E) }92 \qquad | ||
+ | </math> | ||
==Solution 1== | ==Solution 1== |
Revision as of 09:09, 14 November 2024
Problem
Each of bricks (right rectangular prisms) has dimensions , where , , and are pairwise relatively prime positive integers. These bricks are arranged to form a block, as shown on the left below. A th brick with the same dimensions is introduced, and these bricks are reconfigured into a block, shown on the right. The new block is unit taller, unit wider, and unit deeper than the old one. What is ?
(diagram pls)
Solution 1
The xx block has side lengths of . The xx block has side lengths of .
We can create the following system of equations, knowing that the new block has unit taller, deeper, and wider than the original:
Adding all the equations together, we get . Adding to both sides, we get . The question states that are all relatively prime positive integers. Therefore, our answer must be congruent to . The only answer choice satisfying this is . ~lprado
See also
2024 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 20 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.