Difference between revisions of "2024 AMC 10B Problems/Problem 11"

(Problem)
Line 2: Line 2:
  
 
==Problem==
 
==Problem==
 +
In the figure below <math>WXYZ</math> is a rectangle with <math>WX=4</math> and <math>WZ=8</math>. Point <math>M</math> lies <math>\overline{XY}</math>, point <math>A</math> lies on <math>\overline{YZ}</math>, and <math>\angle WMA</math> is a right angle. The areas of <math>\triangle WXM</math> and <math>\triangle WAZ</math> are equal. What is the area of <math>\triangle WMA</math>?
 +
 +
<asy>
 +
pair X = (0, 0);
 +
pair W = (0, 4);
 +
pair Y = (8, 0);
 +
pair Z = (8, 4);
 +
label("$X$", X, dir(180));
 +
label("$W$", W, dir(180));
 +
label("$Y$", Y, dir(0));
 +
label("$Z$", Z, dir(0));
 +
 +
draw(W--X--Y--Z--cycle);
 +
dot(X);
 +
dot(Y);
 +
dot(W);
 +
dot(Z);
 +
pair M = (2, 0);
 +
pair A = (8, 3);
 +
label("$A$", A, dir(0));
 +
dot(M);
 +
dot(A);
 +
draw(W--M--A--cycle);
 +
markscalefactor = 0.05;
 +
draw(rightanglemark(W, M, A));
 +
label("$M$", M, dir(-90));
 +
</asy>
 +
 +
<math>
 +
\textbf{(A) }13 \qquad
 +
\textbf{(B) }14 \qquad
 +
\textbf{(C) }15 \qquad
 +
\textbf{(D) }16 \qquad
 +
\textbf{(E) }17 \qquad
 +
</math>
 +
 +
[[2024 AMC 12B Problems/Problem 7|Solution]]
  
 
==Solution 1==
 
==Solution 1==

Revision as of 05:38, 14 November 2024

The following problem is from both the 2024 AMC 10B #11 and 2024 AMC 12B #7, so both problems redirect to this page.

Problem

In the figure below $WXYZ$ is a rectangle with $WX=4$ and $WZ=8$. Point $M$ lies $\overline{XY}$, point $A$ lies on $\overline{YZ}$, and $\angle WMA$ is a right angle. The areas of $\triangle WXM$ and $\triangle WAZ$ are equal. What is the area of $\triangle WMA$?

[asy] pair X = (0, 0); pair W = (0, 4); pair Y = (8, 0); pair Z = (8, 4); label("$X$", X, dir(180)); label("$W$", W, dir(180)); label("$Y$", Y, dir(0)); label("$Z$", Z, dir(0));  draw(W--X--Y--Z--cycle); dot(X); dot(Y); dot(W); dot(Z); pair M = (2, 0); pair A = (8, 3); label("$A$", A, dir(0)); dot(M); dot(A); draw(W--M--A--cycle); markscalefactor = 0.05; draw(rightanglemark(W, M, A)); label("$M$", M, dir(-90)); [/asy]

$\textbf{(A) }13 \qquad \textbf{(B) }14 \qquad \textbf{(C) }15 \qquad \textbf{(D) }16 \qquad \textbf{(E) }17 \qquad$

Solution

Solution 1

See also

2024 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2024 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png