Difference between revisions of "2024 AMC 10B Problems/Problem 11"
(→Problem) |
|||
Line 2: | Line 2: | ||
==Problem== | ==Problem== | ||
+ | In the figure below <math>WXYZ</math> is a rectangle with <math>WX=4</math> and <math>WZ=8</math>. Point <math>M</math> lies <math>\overline{XY}</math>, point <math>A</math> lies on <math>\overline{YZ}</math>, and <math>\angle WMA</math> is a right angle. The areas of <math>\triangle WXM</math> and <math>\triangle WAZ</math> are equal. What is the area of <math>\triangle WMA</math>? | ||
+ | |||
+ | <asy> | ||
+ | pair X = (0, 0); | ||
+ | pair W = (0, 4); | ||
+ | pair Y = (8, 0); | ||
+ | pair Z = (8, 4); | ||
+ | label("$X$", X, dir(180)); | ||
+ | label("$W$", W, dir(180)); | ||
+ | label("$Y$", Y, dir(0)); | ||
+ | label("$Z$", Z, dir(0)); | ||
+ | |||
+ | draw(W--X--Y--Z--cycle); | ||
+ | dot(X); | ||
+ | dot(Y); | ||
+ | dot(W); | ||
+ | dot(Z); | ||
+ | pair M = (2, 0); | ||
+ | pair A = (8, 3); | ||
+ | label("$A$", A, dir(0)); | ||
+ | dot(M); | ||
+ | dot(A); | ||
+ | draw(W--M--A--cycle); | ||
+ | markscalefactor = 0.05; | ||
+ | draw(rightanglemark(W, M, A)); | ||
+ | label("$M$", M, dir(-90)); | ||
+ | </asy> | ||
+ | |||
+ | <math> | ||
+ | \textbf{(A) }13 \qquad | ||
+ | \textbf{(B) }14 \qquad | ||
+ | \textbf{(C) }15 \qquad | ||
+ | \textbf{(D) }16 \qquad | ||
+ | \textbf{(E) }17 \qquad | ||
+ | </math> | ||
+ | |||
+ | [[2024 AMC 12B Problems/Problem 7|Solution]] | ||
==Solution 1== | ==Solution 1== |
Revision as of 05:38, 14 November 2024
- The following problem is from both the 2024 AMC 10B #11 and 2024 AMC 12B #7, so both problems redirect to this page.
Problem
In the figure below is a rectangle with and . Point lies , point lies on , and is a right angle. The areas of and are equal. What is the area of ?
Solution 1
See also
2024 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2024 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 6 |
Followed by Problem 8 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.