Difference between revisions of "2024 AMC 12B Problems/Problem 20"

(Created blank page)
 
Line 1: Line 1:
 +
==Problem 20==
 +
Suppose <math>A</math>, <math>B</math>, and <math>C</math> are points in the plane with <math>AB=40</math> and <math>AC=42</math>, and let <math>x</math> be the length of the line segment from <math>A</math> to the midpoint of <math>\overline{BC}</math>. Define a function <math>f</math> by letting <math>f(x)</math> be the area of <math>\triangle ABC</math>. Then the domain of <math>f</math> is an open interval <math>(p,q)</math>, and the maximum value <math>r</math> of <math>f(x)</math> occurs at <math>x=s</math>. What is <math>p+q+r+s</math>?
  
 +
<math>
 +
\textbf{(A) }909\qquad
 +
\textbf{(B) }910\qquad
 +
\textbf{(C) }911\qquad
 +
\textbf{(D) }912\qquad
 +
\textbf{(E) }913\qquad
 +
</math>

Revision as of 01:55, 14 November 2024

Problem 20

Suppose $A$, $B$, and $C$ are points in the plane with $AB=40$ and $AC=42$, and let $x$ be the length of the line segment from $A$ to the midpoint of $\overline{BC}$. Define a function $f$ by letting $f(x)$ be the area of $\triangle ABC$. Then the domain of $f$ is an open interval $(p,q)$, and the maximum value $r$ of $f(x)$ occurs at $x=s$. What is $p+q+r+s$?

$\textbf{(A) }909\qquad \textbf{(B) }910\qquad \textbf{(C) }911\qquad \textbf{(D) }912\qquad \textbf{(E) }913\qquad$