Difference between revisions of "2024 AMC 12B Problems/Problem 24"

(Created blank page)
 
Line 1: Line 1:
 +
==Problem 24==
 +
What is the number of ordered triples <math>(a,b,c)</math> of positive integers, with <math>a\le b\le c\le 9</math>, such that there exists a (non-degenerate) triangle <math>\triangle ABC</math> with an integer inradius for which <math>a</math>, <math>b</math>, and <math>c</math> are the lengths of the altitudes from <math>A</math> to <math>\overline{BC}</math>, <math>B</math> to <math>\overline{AC}</math>, and <math>C</math> to <math>\overline{AB}</math>, respectively? (Recall that the inradius of a triangle is the radius of the largest possible circle that can be inscribed in the triangle.)
  
 +
<math>
 +
\textbf{(A) }2\qquad
 +
\textbf{(B) }3\qquad
 +
\textbf{(C) }4\qquad
 +
\textbf{(D) }5\qquad
 +
\textbf{(E) }6\qquad
 +
</math>

Revision as of 01:21, 14 November 2024

Problem 24

What is the number of ordered triples $(a,b,c)$ of positive integers, with $a\le b\le c\le 9$, such that there exists a (non-degenerate) triangle $\triangle ABC$ with an integer inradius for which $a$, $b$, and $c$ are the lengths of the altitudes from $A$ to $\overline{BC}$, $B$ to $\overline{AC}$, and $C$ to $\overline{AB}$, respectively? (Recall that the inradius of a triangle is the radius of the largest possible circle that can be inscribed in the triangle.)

$\textbf{(A) }2\qquad \textbf{(B) }3\qquad \textbf{(C) }4\qquad \textbf{(D) }5\qquad \textbf{(E) }6\qquad$