Difference between revisions of "2024 AMC 10B Problems/Problem 13"
(→Problem) |
|||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Positive integers <math>x</math> and <math>y</math> satisfy the equation <math>\ | + | Positive integers <math>x</math> and <math>y</math> satisfy the equation <math>\sqrt{x} + \sqrt{y} = \sqrt{1183}</math>. What is the minimum possible value of <math>x+y</math>. |
<math>\textbf{(A) } 585 \qquad\textbf{(B) } 595 \qquad\textbf{(C) } 623 \qquad\textbf{(D) } 700 \qquad\textbf{(E) } 791</math> | <math>\textbf{(A) } 585 \qquad\textbf{(B) } 595 \qquad\textbf{(C) } 623 \qquad\textbf{(D) } 700 \qquad\textbf{(E) } 791</math> |
Revision as of 01:02, 14 November 2024
Problem
Positive integers and satisfy the equation . What is the minimum possible value of .
Solution 1
(Not yet conclusive plz add more stuff) .
See also
2024 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.