Difference between revisions of "Rolle's Theorem"
(New page: '''Rolle's theorem'' is an important theorem among the class of results regarding the value of the derivative on an interval. ==Statement== Let <math>f:[a,b]\rightarrow\mathbb{R}</math> L...) |
(→Statement) |
||
Line 3: | Line 3: | ||
==Statement== | ==Statement== | ||
Let <math>f:[a,b]\rightarrow\mathbb{R}</math> | Let <math>f:[a,b]\rightarrow\mathbb{R}</math> | ||
+ | |||
Let <math>f</math> be continous on <math>[a,b]</math> and differentiable on <math>(a,b)</math> | Let <math>f</math> be continous on <math>[a,b]</math> and differentiable on <math>(a,b)</math> | ||
+ | |||
Let <math>f(a)=f(b)</math> | Let <math>f(a)=f(b)</math> | ||
+ | |||
Then <math>\exists</math> <math>c\in (a,b)</math> such that <math>f'(c)=0</math> | Then <math>\exists</math> <math>c\in (a,b)</math> such that <math>f'(c)=0</math> |
Revision as of 20:15, 14 February 2008
'Rolle's theorem is an important theorem among the class of results regarding the value of the derivative on an interval.
Statement
Let
Let be continous on and differentiable on
Let
Then such that