Difference between revisions of "Rolle's Theorem"

(New page: '''Rolle's theorem'' is an important theorem among the class of results regarding the value of the derivative on an interval. ==Statement== Let <math>f:[a,b]\rightarrow\mathbb{R}</math> L...)
 
(Statement)
Line 3: Line 3:
 
==Statement==
 
==Statement==
 
Let <math>f:[a,b]\rightarrow\mathbb{R}</math>
 
Let <math>f:[a,b]\rightarrow\mathbb{R}</math>
 +
 
Let <math>f</math> be continous on <math>[a,b]</math> and differentiable on <math>(a,b)</math>
 
Let <math>f</math> be continous on <math>[a,b]</math> and differentiable on <math>(a,b)</math>
 +
 
Let <math>f(a)=f(b)</math>
 
Let <math>f(a)=f(b)</math>
 +
 
Then <math>\exists</math> <math>c\in (a,b)</math> such that <math>f'(c)=0</math>
 
Then <math>\exists</math> <math>c\in (a,b)</math> such that <math>f'(c)=0</math>

Revision as of 20:15, 14 February 2008

'Rolle's theorem is an important theorem among the class of results regarding the value of the derivative on an interval.

Statement

Let $f:[a,b]\rightarrow\mathbb{R}$

Let $f$ be continous on $[a,b]$ and differentiable on $(a,b)$

Let $f(a)=f(b)$

Then $\exists$ $c\in (a,b)$ such that $f'(c)=0$