Difference between revisions of "2024 AMC 12A Problems/Problem 19"

(Solution 1)
(Solution 1)
Line 6: Line 6:
 
==Solution 1==
 
==Solution 1==
 
First, <math>\angle CBA=60 ^\circ</math> by properties of cyclic quadrilaterals.
 
First, <math>\angle CBA=60 ^\circ</math> by properties of cyclic quadrilaterals.
Let <math>AC=u</math>. We apply the [[Law of Cosines]] on <math>\triangle ACD</math>:
+
 
 +
Let <math>AC=u</math>. Apply the [[Law of Cosines]] on <math>\triangle ACD</math>:
 
<cmath>u^2=3^2+5^2-2(3)(5)\cos120^\circ</cmath>
 
<cmath>u^2=3^2+5^2-2(3)(5)\cos120^\circ</cmath>
 
<cmath>u=7</cmath>
 
<cmath>u=7</cmath>
Line 15: Line 16:
 
<cmath>v=8</cmath>
 
<cmath>v=8</cmath>
  
By Ptolemy’s Theorem,
+
By [[Ptolemy’s Theorem]],
 
<cmath>AB \cdot CD+AD \cdot BC=AC \cdot BD</cmath>
 
<cmath>AB \cdot CD+AD \cdot BC=AC \cdot BD</cmath>
 
<cmath>8 \cdot 3+5 \cdot 3=7BD</cmath>
 
<cmath>8 \cdot 3+5 \cdot 3=7BD</cmath>

Revision as of 22:10, 8 November 2024

Problem

Cyclic quadrilateral $ABCD$ has lengths $BC=CD=3$ and $DA=5$ with $\angle CDA=120^\circ$. What is the length of the shorter diagonal of $ABCD$?

$\textbf{(A) }\frac{31}7 \qquad \textbf{(B) }\frac{33}7 \qquad \textbf{(C) }5 \qquad \textbf{(D) }\frac{39}7 \qquad \textbf{(E) }\frac{41}7 \qquad$

Solution 1

First, $\angle CBA=60 ^\circ$ by properties of cyclic quadrilaterals.

Let $AC=u$. Apply the Law of Cosines on $\triangle ACD$: \[u^2=3^2+5^2-2(3)(5)\cos120^\circ\] \[u=7\]

Let $AB=v$. Apply the Law of Cosines on $\triangle ABC$: \[7^2=3^2+v^2-2(3)(v)\cos60^\circ\] \[v=\frac{3\pm13}{2}\] \[v=8\]

By Ptolemy’s Theorem, \[AB \cdot CD+AD \cdot BC=AC \cdot BD\] \[8 \cdot 3+5 \cdot 3=7BD\] \[BD=\frac{39}{7}\] Since $\frac{39}{7}<5$, The answer is $\boxed{\textbf{(D) }\frac{39}{7}}$.

(someone please insert diagram)

~lptoggled, formatting by eevee9406

Solution 2 (Law of Cosines + Law of Sines)

Draw diagonals $AC$ and $BD$. By Law of Cosines, \begin{align*} AC^2&=3^2 + 5^2 - 2(3)(5)\cos \left(\frac{2\pi}{3} \right) \\ &= 9+25 +15 \\ &=49. \end{align*} Since $AC$ is positive, taking the square root gives $AC=7.$ Let $\angle BDC=\angle CBD=x$. Since $\triangle BCD$ is isosceles, we have $\angle BCD=180-2x$. Notice we can eventually solve $BD$ using the Extended Law of Sines: \[\frac{BD}{\sin(180-2x)}=2r,\] where $r$ is the radius of the circumcircle $ABCD$. Since $\sin(180-2x)=\sin(2x)=2\sin(x)\cos(x)$, we simply our equation: \[\frac{BD}{2\sin(x)\cos(x)}=2r.\] Now we just have to find $\sin(x), \cos(x),$ and $2r$. Since $ABCD$ is cyclic, we have $\angle CBD = \angle CAD = x$. By Law of Cosines on $\triangle ADC$, we have \[3^2=7^2 + 5^2 - 70\cos(x).\] Thus, $\cos(x)=\frac{13}{14}.$ Similarly, by Law of Sines on $\triangle ACD$, we have \[\frac{7}{\sin\left(\frac{2\pi}{3} \right)}=2r.\] Hence, $2r=\frac{14\sqrt3}{3}$. Now, using Law of Sines on $\triangle BCD$, we have $\frac{3}{\sin(x)}=2r= \frac{14\sqrt3}{3},$ so $\sin(x)=\frac{3\sqrt3}{14}.$ Therefore, \[\frac{BD}{2\left(\frac{3\sqrt3}{14}\right) \left(\frac{13}{14} \right)}=\frac{14\sqrt3}{3}.\] Solving, $BD = \frac{39}{7},$ so the answer is $\boxed{\textbf{(D) }\frac{39}{7}}$.

~evanhliu2009

See also

2024 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png