Difference between revisions of "2024 AMC 12A Problems/Problem 25"
(Created page with "==Problem== A graph is <math>\textit{symmetric}</math> about a line if the graph remains unchanged after reflection in that line. For how many quadruples of integers <math>(a,...") |
Ericzzzqwq (talk | contribs) |
||
Line 3: | Line 3: | ||
<math>\textbf{(A) }1282\qquad\textbf{(B) }1292\qquad\textbf{(C) }1310\qquad\textbf{(D) }1320\qquad\textbf{(E) }1330</math> | <math>\textbf{(A) }1282\qquad\textbf{(B) }1292\qquad\textbf{(C) }1310\qquad\textbf{(D) }1320\qquad\textbf{(E) }1330</math> | ||
+ | ==Solution 1== | ||
+ | Symmetric about the line <math>y=x</math> implies that the inverse fuction <math>y^{-1}=y</math>. Then we split the question into several cases to find the final answer. | ||
+ | |||
+ | Case 1: <math>c=0</math> | ||
+ | |||
+ | Then <math>y=\frac{a}{d}x+\frac{b}{d}</math> and <math>y^{-1}=\frac{d}{a}x-\frac{b}{a}</math>. | ||
+ | Giving us <math>\frac{a}{d}=\frac{d}{a}</math> and <math>\frac{b}{d}=-\frac{b}{a}</math> | ||
+ | |||
+ | Therefore, we obtain 2 subcases: <math>b\neq 0, a+d=0</math> and <math>b=0, a^2=d^2</math> | ||
+ | |||
+ | Case 2: <math>c\neq 0</math> | ||
+ | |||
+ | Then <math>y^{-1}=\frac{b-dx}{cx-a}=\frac{(cx-a)(-\frac{d}{c})+b-\frac{ad}{c}}{cx-a}</math> | ||
==See also== | ==See also== | ||
{{AMC12 box|year=2024|ab=A|num-b=24|after=Last Problem}} | {{AMC12 box|year=2024|ab=A|num-b=24|after=Last Problem}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 20:43, 8 November 2024
Problem
A graph is about a line if the graph remains unchanged after reflection in that line. For how many quadruples of integers , where and and are not both , is the graph of symmetric about the line ?
Solution 1
Symmetric about the line implies that the inverse fuction . Then we split the question into several cases to find the final answer.
Case 1:
Then and . Giving us and
Therefore, we obtain 2 subcases: and
Case 2:
Then
See also
2024 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 24 |
Followed by Last Problem |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.