Difference between revisions of "2024 AMC 12A Problems/Problem 25"

(Created page with "==Problem== A graph is <math>\textit{symmetric}</math> about a line if the graph remains unchanged after reflection in that line. For how many quadruples of integers <math>(a,...")
 
Line 3: Line 3:
  
 
<math>\textbf{(A) }1282\qquad\textbf{(B) }1292\qquad\textbf{(C) }1310\qquad\textbf{(D) }1320\qquad\textbf{(E) }1330</math>
 
<math>\textbf{(A) }1282\qquad\textbf{(B) }1292\qquad\textbf{(C) }1310\qquad\textbf{(D) }1320\qquad\textbf{(E) }1330</math>
 +
==Solution 1==
 +
Symmetric about the line <math>y=x</math> implies that the inverse fuction <math>y^{-1}=y</math>. Then we split the question into several cases to find the final answer.
 +
 +
Case 1: <math>c=0</math>
 +
 +
Then <math>y=\frac{a}{d}x+\frac{b}{d}</math> and <math>y^{-1}=\frac{d}{a}x-\frac{b}{a}</math>.
 +
Giving us <math>\frac{a}{d}=\frac{d}{a}</math> and <math>\frac{b}{d}=-\frac{b}{a}</math>
 +
 +
Therefore, we obtain 2 subcases: <math>b\neq 0, a+d=0</math> and <math>b=0, a^2=d^2</math>
 +
 +
Case 2: <math>c\neq 0</math>
 +
 +
Then <math>y^{-1}=\frac{b-dx}{cx-a}=\frac{(cx-a)(-\frac{d}{c})+b-\frac{ad}{c}}{cx-a}</math>
  
 
==See also==
 
==See also==
 
{{AMC12 box|year=2024|ab=A|num-b=24|after=Last Problem}}
 
{{AMC12 box|year=2024|ab=A|num-b=24|after=Last Problem}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 20:43, 8 November 2024

Problem

A graph is $\textit{symmetric}$ about a line if the graph remains unchanged after reflection in that line. For how many quadruples of integers $(a,b,c,d)$, where $|a|,|b|,|c|,|d|\le5$ and $c$ and $d$ are not both $0$, is the graph of \[y=\frac{ax+b}{cx+d}\]symmetric about the line $y=x$?

$\textbf{(A) }1282\qquad\textbf{(B) }1292\qquad\textbf{(C) }1310\qquad\textbf{(D) }1320\qquad\textbf{(E) }1330$

Solution 1

Symmetric about the line $y=x$ implies that the inverse fuction $y^{-1}=y$. Then we split the question into several cases to find the final answer.

Case 1: $c=0$

Then $y=\frac{a}{d}x+\frac{b}{d}$ and $y^{-1}=\frac{d}{a}x-\frac{b}{a}$. Giving us $\frac{a}{d}=\frac{d}{a}$ and $\frac{b}{d}=-\frac{b}{a}$

Therefore, we obtain 2 subcases: $b\neq 0, a+d=0$ and $b=0, a^2=d^2$

Case 2: $c\neq 0$

Then $y^{-1}=\frac{b-dx}{cx-a}=\frac{(cx-a)(-\frac{d}{c})+b-\frac{ad}{c}}{cx-a}$

See also

2024 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png