Difference between revisions of "2024 AMC 10A Problems/Problem 23"

m (Solution)
Line 24: Line 24:
  
 
~eevee9406
 
~eevee9406
 
+
==Solution 2==
 +
<math>(a+c)(b+1)=187</math>
 +
<math>b+1=±11,±17</math>
 +
<math>b=-12,10,-18,16</math>
 +
<math>(a-c)(b-1)=13</math>
 +
<math>b-1=±1,±13</math>
 +
<math>b=0,2,-12,14</math>
 +
<math>\rightarrow b=-12</math>
 +
Which implies that <math>a+c=-17</math>
 +
Therefore, ab+ba+ac=100+87+60-(a+b+c)
 +
<math>=\boxed{\text{(B) }276}</math>
 
==See also==
 
==See also==
 
{{AMC10 box|year=2024|ab=A|num-b=22|num-a=24}}
 
{{AMC10 box|year=2024|ab=A|num-b=22|num-a=24}}
 
{{AMC12 box|year=2024|ab=A|num-b=16|num-a=18}}
 
{{AMC12 box|year=2024|ab=A|num-b=16|num-a=18}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 18:32, 8 November 2024

The following problem is from both the 2024 AMC 10A #23 and 2024 AMC 12A #17, so both problems redirect to this page.

Problem

Integers $a$, $b$, and $c$ satisfy $ab + c = 100$, $bc + a = 87$, and $ca + b = 60$. What is $ab + bc + ca$?

$\textbf{(A) }212 \qquad \textbf{(B) }247 \qquad \textbf{(C) }258 \qquad \textbf{(D) }276 \qquad \textbf{(E) }284 \qquad$

Solution

Subtracting the first two equations yields $(a-c)(b-1)=13$. Notice that both factors are integers, so $b-1$ could equal one of $13,1,-1,-13$ and $b=14,2,0,-12$. We consider each case separately:

For $b=0$, from the second equation, we see that $a=87$. Then $80c=60$, which is not possible as $c$ is an integer, so this case is invalid.

For $b=2$, we have $2c+a=87$ and $ca=58$, which by experimentation on the factors of $58$ has no solution, so this is also invalid.

For $b=14$, we have $14c+a=87$ and $ca=46$, which by experimentation on the factors of $46$ has no solution, so this is also invalid.

Thus, we must have $b=-12$, so $a=12c+87$ and $ca=72$. Thus $c(12c+87)=72$, so $c(4c+29)=24$. We can simply trial and error this to find that $c=-8$ so then $a=-9$. The answer is then $(-9)(-12)+(-12)(-8)+(-8)(-9)=108+96+72=\boxed{\textbf{(D) }276}$.

~eevee9406

Solution 2

$(a+c)(b+1)=187$ $b+1=±11,±17$ $b=-12,10,-18,16$ $(a-c)(b-1)=13$ $b-1=±1,±13$ $b=0,2,-12,14$ $\rightarrow b=-12$ Which implies that $a+c=-17$ Therefore, ab+ba+ac=100+87+60-(a+b+c) $=\boxed{\text{(B) }276}$

See also

2024 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2024 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png