Difference between revisions of "2024 AMC 12A Problems/Problem 19"

m
(Solution 1)
Line 24: Line 24:
 
The answer is <math>\boxed{\textbf{(D) }\frac{39}{7}}</math>.
 
The answer is <math>\boxed{\textbf{(D) }\frac{39}{7}}</math>.
  
~formatting by eevee9406
+
~lptoggled, formatting by eevee9406
  
 
==See also==
 
==See also==
 
{{AMC12 box|year=2024|ab=A|num-b=18|num-a=20}}
 
{{AMC12 box|year=2024|ab=A|num-b=18|num-a=20}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 18:18, 8 November 2024

Problem

Cyclic quadrilateral $ABCD$ has lengths $BC=CD=3$ and $DA=5$ with $\angle CDA=120^\circ$. What is the length of the shorter diagonal of $ABCD$?

$\textbf{(A) }\frac{31}7 \qquad \textbf{(B) }\frac{33}7 \qquad \textbf{(C) }5 \qquad \textbf{(D) }\frac{39}7 \qquad \textbf{(E) }\frac{41}7 \qquad$

Solution 1

First, $\angle CBA=60 ^\circ$ by properties of cyclic quadrilaterals. Let $AC=u$. We apply the Law of Cosines on $\triangle ACD$: \[u^2=3^2+5^2-2(3)(5)\cos120^\circ\] \[u=7\]


Let $AB=v$. Apply the Law of Cosines on $\triangle ABC$: \[7^2=3^2+v^2-2(3)(v)\cos60^\circ\] \[v=\frac{3\pm13}{2}\] \[v=8\]


By Ptolemy’s Theorem, \[AB \cdot CD+AD \cdot BC=AC \cdot BD\] \[8 \cdot 3+5 \cdot 3=7BD\] \[BD=\frac{39}{7}\] Since $\frac{39}{7}<5$, The answer is $\boxed{\textbf{(D) }\frac{39}{7}}$.

~lptoggled, formatting by eevee9406

See also

2024 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png