Difference between revisions of "2024 AMC 12A Problems/Problem 15"

(Solution 1)
m
Line 3: Line 3:
  
 
==Solution 1==
 
==Solution 1==
You can factor <math>(p^2 + 4)(q^2 + 4)(r^2 + 4)</math> as (p−2i)(p+2i)(q−2i)(q+2i)(r−2i)(r+2i).
+
You can factor <math>(p^2 + 4)(q^2 + 4)(r^2 + 4)</math> as <math>(p+2i)(p-2i)(q+2i)(q-2i)(r+2i)(r-2i)</math>.
  
 
For any polynomial <math>f(x)</math>, you can create a new polynomial <math>f(x+2)</math>, which will have roots that instead have the value subtracted.
 
For any polynomial <math>f(x)</math>, you can create a new polynomial <math>f(x+2)</math>, which will have roots that instead have the value subtracted.
Line 10: Line 10:
  
 
-ev2028
 
-ev2028
 +
~Latex by eevee9406
 +
 +
==Solution 2==
 +
Let <math>f(x)=x^3 + 2x^2 - x + 3</math>. Then
 +
<math>(p^2 + 4)(q^2 + 4)(r^2 + 4)=(p+2i)(p-2i)(q+2i)(q-2i)(r+2i)(r-2i)=f(2i)f(-2i)</math>.
 +
 +
 +
We find that <math>f(2i)=-8i-8-2i+3=-10i-5</math> and <math>f(-2i)=8i-8+2i+3=10i-5</math>, so <math>f(2i)f(-2i)=(-5-10i)(-5+10i)=(-5)^2-(10i)^2=25+100=\boxed{\textbf{(D) }125}</math>.
 +
 +
~eevee9406
 +
 
==Solution 3==
 
==Solution 3==
 
First, denote that
 
First, denote that
Line 21: Line 32:
 
<cmath>=(-3)^2+4((-1)^2-2(-3)(-2))+4^2((-2)^2-2(-1))+4^3</cmath>
 
<cmath>=(-3)^2+4((-1)^2-2(-3)(-2))+4^2((-2)^2-2(-1))+4^3</cmath>
 
<cmath>=\fbox{(D) 125}</cmath>
 
<cmath>=\fbox{(D) 125}</cmath>
 
==Solution 2==
 
Let <math>f(x)=x^3 + 2x^2 - x + 3</math>. Then
 
<math>(p^2 + 4)(q^2 + 4)(r^2 + 4)=(p+2i)(p-2i)(q+2i)(q-2i)(r+2i)(r-2i)=f(2i)f(-2i)</math>.
 
 
 
We find that <math>f(2i)=-8i-8-2i+3=-10i-5</math> and <math>f(-2i)=8i-8+2i+3=10i-5</math>, so <math>f(2i)f(-2i)=(-5-10i)(-5+10i)=(-5)^2-(10i)^2=25+100=\boxed{\textbf{(D) }125}</math>.
 
 
~eevee9406
 
  
 
==See also==
 
==See also==
 
{{AMC12 box|year=2024|ab=A|num-b=14|num-a=16}}
 
{{AMC12 box|year=2024|ab=A|num-b=14|num-a=16}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 18:10, 8 November 2024

Problem

The roots of $x^3 + 2x^2 - x + 3$ are $p, q,$ and $r.$ What is the value of \[(p^2 + 4)(q^2 + 4)(r^2 + 4)?\]$\textbf{(A) } 64 \qquad \textbf{(B) } 75 \qquad \textbf{(C) } 100 \qquad \textbf{(D) } 125 \qquad \textbf{(E) } 144$

Solution 1

You can factor $(p^2 + 4)(q^2 + 4)(r^2 + 4)$ as $(p+2i)(p-2i)(q+2i)(q-2i)(r+2i)(r-2i)$.

For any polynomial $f(x)$, you can create a new polynomial $f(x+2)$, which will have roots that instead have the value subtracted.

Substituting $x-2$ and $x+2$ into $x$ for the first polynomial, gives you $10i-5$ and $-10i-5$ as $c$ for both equations. Multiplying $10i-5$ and $-10i-5$ together gives you $\boxed{\textbf{(D) }125}$.

-ev2028 ~Latex by eevee9406

Solution 2

Let $f(x)=x^3 + 2x^2 - x + 3$. Then $(p^2 + 4)(q^2 + 4)(r^2 + 4)=(p+2i)(p-2i)(q+2i)(q-2i)(r+2i)(r-2i)=f(2i)f(-2i)$.


We find that $f(2i)=-8i-8-2i+3=-10i-5$ and $f(-2i)=8i-8+2i+3=10i-5$, so $f(2i)f(-2i)=(-5-10i)(-5+10i)=(-5)^2-(10i)^2=25+100=\boxed{\textbf{(D) }125}$.

~eevee9406

Solution 3

First, denote that \[p+q+r=-2, pq+pr+qr=-1, pqr=-3\] Then we expand the expression \[(p^2+4)(q^2+4)(r^2+4)\] \[=(pqr)^2+4((pq)^2+(pr)^2+(qr)^2)+4^2(p^2+q^2+r^2)+4^3\] \[=(-3)^2+4((pq+pr+qr)^2-2pqr(p+q+r))+4^2((p+q+r)^2-2(pq+pr+qr))+4^3\] \[=(-3)^2+4((-1)^2-2(-3)(-2))+4^2((-2)^2-2(-1))+4^3\] \[=\fbox{(D) 125}\]

See also

2024 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png