Difference between revisions of "2024 AMC 10A Problems/Problem 15"
Technodoggo (talk | contribs) m (→Solution 2a (perhaps more clear): oops 3\neq5) |
Technodoggo (talk | contribs) (sol 2's process is slightly better than 2a's, so combining the justification for 2a and the process for 2 makes sense =D also, I wonder who the reader of this message is! 1434 hehehehhehehhe he he he eh eh eh e) |
||
Line 22: | Line 22: | ||
==Solution 2 (not rigorously proven)== | ==Solution 2 (not rigorously proven)== | ||
− | + | Ideally, we would like for the two squares to be as close as possible. The best case is that they are consecutive squares (no square numbers in between them); however, since <math>M+1213</math> and <math>M+3773</math> (and thus their squares) have the same parity, they cannot be consecutive squares (which are always opposite parities). The best we can do is that <math>M+1213</math> and <math>M+3773</math> have one square in between them. | |
Let the square between <math>M+1213</math> and <math>M+3773</math> be <math>x^2</math>. So, we have <math>M+1213 = (x-1)^2</math> and <math>M+3773 = (x+1)^2</math>. Subtracting the two, we have <math>(M+3773)-(M+1213) = (x+1)^2 - (x-1)^2</math>, which yields <math>2560 = 4x</math>, which leads to <math>x = 640</math>. Therefore, the two squares are <math>639^2</math> and <math>641^2</math>, which both have units digit <math>1</math>. Since both <math>1213</math> and <math>3773</math> have units digit <math>3</math>, <math>M</math> will have units digit <math>\boxed{\textbf{(E) }8}</math>. | Let the square between <math>M+1213</math> and <math>M+3773</math> be <math>x^2</math>. So, we have <math>M+1213 = (x-1)^2</math> and <math>M+3773 = (x+1)^2</math>. Subtracting the two, we have <math>(M+3773)-(M+1213) = (x+1)^2 - (x-1)^2</math>, which yields <math>2560 = 4x</math>, which leads to <math>x = 640</math>. Therefore, the two squares are <math>639^2</math> and <math>641^2</math>, which both have units digit <math>1</math>. Since both <math>1213</math> and <math>3773</math> have units digit <math>3</math>, <math>M</math> will have units digit <math>\boxed{\textbf{(E) }8}</math>. | ||
− | ~i_am_suk_at_math_2 | + | ~i_am_suk_at_math_2 (parity argument editing by Technodoggo) |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==See also== | ==See also== |
Revision as of 18:00, 8 November 2024
- The following problem is from both the 2024 AMC 10A #15 and 2024 AMC 12A #9, so both problems redirect to this page.
Problem
Let be the greatest integer such that both and are perfect squares. What is the units digit of ?
Solution 1
Let and for some positive integers and We subtract the first equation from the second, then apply the difference of squares: Note that and have the same parity, and
We wish to maximize both and so we maximize and minimize It follows that from which
Finally, we get so the units digit of is
~MRENTHUSIASM ~Tacos_are_yummy_1
Solution 2 (not rigorously proven)
Ideally, we would like for the two squares to be as close as possible. The best case is that they are consecutive squares (no square numbers in between them); however, since and (and thus their squares) have the same parity, they cannot be consecutive squares (which are always opposite parities). The best we can do is that and have one square in between them.
Let the square between and be . So, we have and . Subtracting the two, we have , which yields , which leads to . Therefore, the two squares are and , which both have units digit . Since both and have units digit , will have units digit .
~i_am_suk_at_math_2 (parity argument editing by Technodoggo)
See also
2024 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Problem 16 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2024 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 8 |
Followed by Problem 10 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.