Difference between revisions of "2024 AMC 12A Problems/Problem 20"

m
(Solution 1)
Line 5: Line 5:
 
==Solution 1==
 
==Solution 1==
  
Let <math>\overline{AP}=x</math> and <math>\overline{AQ}=y</math>. Applying the sine formula for a triangle's area, we see that <math>[\Delta APQ]=\dfrac12\cdot x\cdot y\sin(\angle PAQ)=\dfrac{xy}2\sin(60^\circ)=\dfrac{\sqrt3}4xy</math>. Without loss of generality, we let <math>AB=BC=CA=1</math>, and thus the area of <math>\Delta ABC</math> is <math>\dfrac{\sqrt3}4</math>; we therefore require <math>\dfrac{\sqrt3}4xy\le\dfrac{\sqrt3}8\implies xy\le\dfrac12</math> for <math>0\le x,y\le1</math>. A quick rough sketch of <math>y=\dfrac1{2x}</math> on the square given by <math>x,y\in[0,1]</math> reveals that the curve intersects the boundaries at <math>(0.5,1)</math> and <math>(1,0.5)</math>, and it is actually quite (very) obvious that the area bounded by the inequality <math>xy\le0.5</math> and the aforementioned unit square is more than <math>\dfrac34</math> but less than <math>\dfrac78</math> (cf. the diagram below). Thus, our answer is <math>\boxed{\textbf{(D) }\left(\dfrac34,\dfrac78\right]}</math>.  
+
Let <math>\overline{AP}=x</math> and <math>\overline{AQ}=y</math>. Applying the sine formula for a triangle's area, we see that  
 +
<cmath>[\Delta APQ]=\dfrac12\cdot x\cdot y\sin(\angle PAQ)=\dfrac{xy}2\sin(60^\circ)=\dfrac{\sqrt3}4xy.</cmath>  
 +
 
 +
Without loss of generality, we let <math>AB=BC=CA=1</math>, and thus <math>[\Delta ABC]=\dfrac{\sqrt3}4</math>; we therefore require <math>\dfrac{\sqrt3}4xy\le\dfrac12\cdot\dfrac{\sqrt3}4\implies xy\le\dfrac12</math> for <math>0\le x,y\le1</math>. A quick rough sketch of <math>y=\dfrac1{2x}</math> on the square given by <math>x,y\in[0,1]</math> reveals that the curve intersects the boundaries at <math>(0.5,1)</math> and <math>(1,0.5)</math>, and it is actually quite (very) obvious that the area bounded by the inequality <math>xy\le0.5</math> and the aforementioned unit square is more than <math>\dfrac34</math> but less than <math>\dfrac78</math> (cf. the diagram below). Thus, our answer is <math>\boxed{\textbf{(D) }\left(\dfrac34,\dfrac78\right]}</math>.  
  
 
~Technodoggo
 
~Technodoggo

Revision as of 17:48, 8 November 2024

Points $P$ and $Q$ are chosen uniformly and independently at random on sides $\overline {AB}$ and $\overline{AC},$ respectively, of equilateral triangle $\triangle ABC.$ Which of the following intervals contains the probability that the area of $\triangle APQ$ is less than half the area of $\triangle ABC?$

$\textbf{(A) } \left[\frac 38, \frac 12\right] \qquad \textbf{(B) } \left(\frac 12, \frac 23\right] \qquad \textbf{(C) } \left(\frac 23, \frac 34\right] \qquad \textbf{(D) } \left(\frac 34, \frac 78\right] \qquad \textbf{(E) } \left(\frac 78, 1\right]$

Solution 1

Let $\overline{AP}=x$ and $\overline{AQ}=y$. Applying the sine formula for a triangle's area, we see that \[[\Delta APQ]=\dfrac12\cdot x\cdot y\sin(\angle PAQ)=\dfrac{xy}2\sin(60^\circ)=\dfrac{\sqrt3}4xy.\]

Without loss of generality, we let $AB=BC=CA=1$, and thus $[\Delta ABC]=\dfrac{\sqrt3}4$; we therefore require $\dfrac{\sqrt3}4xy\le\dfrac12\cdot\dfrac{\sqrt3}4\implies xy\le\dfrac12$ for $0\le x,y\le1$. A quick rough sketch of $y=\dfrac1{2x}$ on the square given by $x,y\in[0,1]$ reveals that the curve intersects the boundaries at $(0.5,1)$ and $(1,0.5)$, and it is actually quite (very) obvious that the area bounded by the inequality $xy\le0.5$ and the aforementioned unit square is more than $\dfrac34$ but less than $\dfrac78$ (cf. the diagram below). Thus, our answer is $\boxed{\textbf{(D) }\left(\dfrac34,\dfrac78\right]}$.

~Technodoggo

[asy] /*Asymptote visual by Technodoggo, 7 November 2024*/ unitsize(8cm);  draw((0,0)--(1,0)--(1,1)--(0,1)--cycle); label("$0$",(-0.05,-0.05)); label("$1$",(1,-0.05),S); label("$1$",(-0.05,1),W); draw((-0.05,0)--(1,0)--(1,-0.05)); draw((0,-0.05)--(0,1)--(-0.05,1));  real f(real x) {return 1/(2*x);}  path c = graph(f, 0.5,1)--(1,0)--(0,0)--(0,1)--cycle;  filldraw(c,blue+white);  draw((0.5,1)--(0.5,0.5)--(1,0.5),white+dashed+1.1); draw((0.5,1)--(1,0.5),red+dashed+1.1); [/asy]