Difference between revisions of "2024 AMC 12A Problems/Problem 8"

(Created page with "How many angles <math>\theta</math> with <math>0\le\theta\le2\pi</math> satisfy <math>\log(\sin(3\theta))+\log(\cos(2\theta))=0</math>? <math> \textbf{(A) }0 \qquad \textbf{(...")
 
m
Line 1: Line 1:
 +
==Problem==
 
How many angles <math>\theta</math> with <math>0\le\theta\le2\pi</math> satisfy <math>\log(\sin(3\theta))+\log(\cos(2\theta))=0</math>?
 
How many angles <math>\theta</math> with <math>0\le\theta\le2\pi</math> satisfy <math>\log(\sin(3\theta))+\log(\cos(2\theta))=0</math>?
  
Line 14: Line 15:
  
 
~Technodoggo
 
~Technodoggo
 +
 +
==See also==
 +
{{AMC12 box|year=2024|ab=A|num-b=7|num-a=9}}
 +
{{MAA Notice}}

Revision as of 17:47, 8 November 2024

Problem

How many angles $\theta$ with $0\le\theta\le2\pi$ satisfy $\log(\sin(3\theta))+\log(\cos(2\theta))=0$?

$\textbf{(A) }0 \qquad \textbf{(B) }1 \qquad \textbf{(C) }2 \qquad \textbf{(D) }3 \qquad \textbf{(E) }4 \qquad$

Solution

Note that this is equivalent to $\sin(3\theta)\cos(2\theta)=1$, which is clearly only possible when $\sin(3\theta)=\cos(2\theta)=\pm1$. (If either one is between $1$ and $-1$, the other one must be greater than $1$ or less than $-1$ to offset the product, which is impossible for sine and cosine.) They cannot be both $-1$ since we cannot take logarithms of negative numbers, so they are both $+1$. Then $3\theta$ is $\dfrac\pi2$ more than a multiple of $2\pi$ and $2\theta$ is a multiple of $2\pi$, so $\theta$ is $\dfrac\pi6$ more than a multiple of $\dfrac23\pi$ and also a multiple of $\pi$. However, a multiple of $\dfrac23\pi$ will always have a denominator of $1$ or $3$, and never $6$; it can thus never add with $\dfrac\pi6$ to form an integral multiple of $\pi$. Thus, there are $\boxed{\textbf{(A) }0}$ solutions.

~Technodoggo

See also

2024 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png