Difference between revisions of "2024 AMC 10A Problems/Problem 10"

(Problem)
Line 2: Line 2:
  
 
Consider the following operation. Given a positive integer <math>n</math>, if <math>n</math> is a multiple of <math>3</math>, then you replace <math>n</math> by <math>
 
Consider the following operation. Given a positive integer <math>n</math>, if <math>n</math> is a multiple of <math>3</math>, then you replace <math>n</math> by <math>
\frac{n}{3}</math>. If <math>n</math> is not a multiple of <math>3</math>, then you replace <math>n</math> by <math>n+10</math>. Then continue this process. For example, beginning with <math>n=4</math>, this procedure gives <math>4 \rightarrow 14 \rightarrow 24 \rightarrow 8 \rightarrow 18 \rightarrow 6 \rightarrow 2 \rightarrow 12 \rightarrow \cdots</math>. Suppose you start with <math>n=100</math>. What value results if you perform this operation exactly <math>100</math> times.
+
\frac{n}{3}</math>. If <math>n</math> is not a multiple of <math>3</math>, then you replace <math>n</math> by <math>n+10</math>. Then continue this process. For example, beginning with <math>n=4</math>, this procedure gives <math>4 \rightarrow 14 \rightarrow 24 \rightarrow 8 \rightarrow 18 \rightarrow 6 \rightarrow 2 \rightarrow 12 \rightarrow \cdots</math>. Suppose you start with <math>n=100</math>. What value results if you perform this operation exactly <math>100</math> times?
  
 
== Solution 1 ==
 
== Solution 1 ==

Revision as of 16:35, 8 November 2024

Problem

Consider the following operation. Given a positive integer $n$, if $n$ is a multiple of $3$, then you replace $n$ by $\frac{n}{3}$. If $n$ is not a multiple of $3$, then you replace $n$ by $n+10$. Then continue this process. For example, beginning with $n=4$, this procedure gives $4 \rightarrow 14 \rightarrow 24 \rightarrow 8 \rightarrow 18 \rightarrow 6 \rightarrow 2 \rightarrow 12 \rightarrow \cdots$. Suppose you start with $n=100$. What value results if you perform this operation exactly $100$ times?

Solution 1

Let $s$ be the number of times the operation is performed. Notice the sequence goes $100 \rightarrow 110 \rightarrow 120 \rightarrow 40 \rightarrow 50 \rightarrow 60 \rightarrow 20 \rightarrow 30 \rightarrow 10 \rightarrow 20 \rightarrow \cdots$. Thus, for $s \equiv 1 \pmod{3}$, the value is $30$. Since $100 \equiv 1 \pmod{3}$, the answer is $\boxed{\textbf{(B)} 30}$

~andliu766