Difference between revisions of "2024 AMC 10A Problems/Problem 20"

(Problem)
(See also)
Line 12: Line 12:
 
\textbf{(E) }675 \qquad</math>
 
\textbf{(E) }675 \qquad</math>
 
==See also==
 
==See also==
{{AMC10 box|year=2024|ab=A|before=First Problem|num-a=2}}
+
{{AMC10 box|year=2024|ab=A|before=19|num-a=21}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 16:08, 8 November 2024

Problem

Let $S$ be a subset of $\{1, 2, 3, \dots, 2024\}$ such that the following two conditions hold: - If $x$ and $y$ are distinct elements of $S$, then $|x-y| > 2$ - If $x$ and $y$ are distinct odd elements of $S$, then $|x-y| > 6$. What is the maximum possible number of elements in $S$?

$\textbf{(A) }436 \qquad \textbf{(B) }506 \qquad \textbf{(C) }608 \qquad \textbf{(D) }654 \qquad \textbf{(E) }675 \qquad$

See also

2024 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png