Difference between revisions of "2018 AMC 10B Problems/Problem 13"

(Solution 1)
(Solution 2)
Line 19: Line 19:
  
 
==Solution 2==
 
==Solution 2==
Note that <math>10^{2k}+1</math> for some odd <math>k</math> will suffice <math>\mod {101}</math>. Each <math>2k \in \{2,6,10,\dots,2018\}</math>, so the answer is <math>\boxed{\textbf{(C) } 505}</math>
+
Note that <math>10^{2k}+1</math> for some odd <math>k</math> will satisfy <math>\mod {101}</math>. Each <math>2k \in \{2,6,10,\dots,2018\}</math>, so the answer is <math>\boxed{\textbf{(C) } 505}</math>
  
 
==Solution 3==
 
==Solution 3==

Revision as of 08:59, 3 November 2024

Problem

How many of the first $2018$ numbers in the sequence $101, 1001, 10001, 100001, \dots$ are divisible by $101$?

$\textbf{(A) }253 \qquad \textbf{(B) }504 \qquad \textbf{(C) }505 \qquad \textbf{(D) }506  \qquad \textbf{(E) }1009 \qquad$

Solution 1

The number $10^n+1$ is divisible by 101 if and only if $10^n\equiv -1\pmod{101}$. We note that $(10,10^2,10^3,10^4)\equiv (10,-1,-10,1)\pmod{101}$, so the powers of 10 are 4-periodic mod 101.

It follows that $10^n\equiv -1\pmod{101}$ if and only if $n\equiv 2\pmod 4$.

In the given list, $10^2+1,10^3+1,10^4+1,\dots,10^{2019}+1$, the desired exponents are $2,6,10,\dots,2018$, and there are $\dfrac{2020}{4}=\boxed{\textbf{(C) } 505}$ numbers in that list.

Solution 2

Note that $10^{2k}+1$ for some odd $k$ will satisfy $\mod {101}$. Each $2k \in \{2,6,10,\dots,2018\}$, so the answer is $\boxed{\textbf{(C) } 505}$

Solution 3

If we divide each number by $101$, we see a pattern occuring in every 4 numbers. $101, 1000001, 10000000001, \dots$. We divide $2018$ by $4$ to get $504$ with $2$ left over. Looking at our pattern of four numbers from above, the first number is divisible by $101$. This means that the first of the $2$ left over will be divisible by $101$, so our answer is $\boxed{\textbf{(C) } 505}$.

Solution 4

Note that $909$ is divisible by $101$, and thus $9999$ is too. We know that $101$ is divisible and $1001$ isn't so let us start from $10001$. We subtract $9999$ to get 2. Likewise from $100001$ we subtract, but we instead subtract $9999$ times $10$ or $99990$ to get $11$. We do it again and multiply the 9's by $10$ to get $101$. Following the same knowledge, we can use mod $101$ to finish the problem. The sequence will just be subtracting 1, multiplying by 10, then adding 1. Thus the sequence is ${0,-9,-99 ( 2),11, 0, ...}$. Thus it repeats every four. Consider the sequence after the 1st term and we have 2017 numbers. Divide $2017$ by four to get $504$ remainder $1$. Thus the answer is $504$ plus the 1st term or $\boxed{\textbf{(C) } 505}$.

Solution 5

Note that $101=x^2+1$ and $100...0001=x^n+1$, where $x=10$. We have that $\frac{x^n+1}{x^2+1}$ must have a remainder of $0$. By the remainder theorem, the roots of $x^2+1$ must also be roots of $x^n+1$. Plugging in $i,-i$ to $x^n+1$ yields that $n\equiv2\mod{4}$. Because the sequence starts with $10^2+1$, the answer is $\lceil 2018/4 \rceil=\boxed{\textbf{(C) } 505}$

See Also

2018 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png