Difference between revisions of "2004 AMC 12B Problems/Problem 24"

 
m ({{solution}})
Line 1: Line 1:
#REDIRECT [[2004 AMC 12B Problems/Problem 23]]
+
== Problem ==
 +
In <math>\triangle ABC</math>, <math>AB = BC</math>, and <math>\overline{BD}</math> is an [[altitude]]. Point <math>E</math> is on the extension of <math>\overline{AC}</math> such that <math>BE = 10</math>. The values of <math>\tan \angle CBE</math>, <math>\tan \angle DBE</math>, and <math>\tan \angle ABE</math> form a [[geometric progression]], and the values of <math>\cot \angle DBE, \cot \angle CBE, \cot \angle DBC</math> form an [[arithmetic progression]]. What is the area of <math>\triangle ABC</math>?
 +
 
 +
<math>\mathrm{(A)}\ 16
 +
\qquad\mathrm{(B)}\ \frac {50}3
 +
\qquad\mathrm{(C)}\ 10\sqrt{3}
 +
\qquad\mathrm{(D)}\ 8\sqrt{5}
 +
\qquad\mathrm{(E)}\ 18</math>
 +
== Solution ==
 +
{{solution}}
 +
 
 +
== See also ==
 +
{{AMC12 box|year=2004|ab=B|num-b=23|num-a=25}}
 +
 
 +
[[Category:Intermediate Geometry Problems]]
 +
[[Category:Intermediate Trigonometry Problems]]

Revision as of 10:11, 10 February 2008

Problem

In $\triangle ABC$, $AB = BC$, and $\overline{BD}$ is an altitude. Point $E$ is on the extension of $\overline{AC}$ such that $BE = 10$. The values of $\tan \angle CBE$, $\tan \angle DBE$, and $\tan \angle ABE$ form a geometric progression, and the values of $\cot \angle DBE, \cot \angle CBE, \cot \angle DBC$ form an arithmetic progression. What is the area of $\triangle ABC$?

$\mathrm{(A)}\ 16 \qquad\mathrm{(B)}\ \frac {50}3 \qquad\mathrm{(C)}\ 10\sqrt{3} \qquad\mathrm{(D)}\ 8\sqrt{5} \qquad\mathrm{(E)}\ 18$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

2004 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions