Difference between revisions of "Elementary symmetric sum"
(→See Also: category) |
m (→Uses: spelling errors, plus what we sum over in Vieta's formulas.) |
||
Line 16: | Line 16: | ||
== Uses == | == Uses == | ||
− | Any symmetric sum can be written as a [[polynomial]] of the | + | Any symmetric sum can be written as a [[polynomial]] of the elementary symmetric sum functions. For example, <math>x^3 + y^3 + z^3 = (x+y+z)(x^2 + y^2 + z^2 - xy - yz - xz) + 3xyz = e_1^3 - 3e_1e_2 + 3e_3</math>. This is often used to solve systems of equations involving [[power sum]]s, combined with Vieta's formulas. |
− | + | Elementary symmetric sums show up in [[Vieta's formulas]]. In a monic polynomial, the coefficient of the <math>x^1</math> term is <math>e_1</math>, and the coefficient of the <math>x^k</math> term is <math>e_k</math>, where the symmetric sums are taken over the roots of the polynomial. | |
==See Also== | ==See Also== |
Revision as of 19:44, 6 February 2008
An elementary symmetric sum is a type of summation.
Contents
Definition
The -th elmentary symmetric sum of a set of numbers is the sum of all products of of those numbers (). For example, if , and our set of numbers is , then:
1st Symmetric Sum =
2nd Symmetric Sum =
3rd Symmetric Sum =
4th Symmetric Sum =
Notation
The first elmentary symmetric sum of is often written . The th can be written
Uses
Any symmetric sum can be written as a polynomial of the elementary symmetric sum functions. For example, . This is often used to solve systems of equations involving power sums, combined with Vieta's formulas.
Elementary symmetric sums show up in Vieta's formulas. In a monic polynomial, the coefficient of the term is , and the coefficient of the term is , where the symmetric sums are taken over the roots of the polynomial.