Difference between revisions of "2001 AIME I Problems/Problem 7"
(→Solution 7) |
(\*Solution 8*\) |
||
Line 105: | Line 105: | ||
~YBSuburbanTea | ~YBSuburbanTea | ||
+ | |||
+ | == Solution 8 (vectors) == | ||
+ | To solve this problem, we can use the fact that, in <math>\triangle ABC</math>, the vector representation of the incenter is <math>\overrightarrow I = \frac{a\overrightarrow A + b\overrightarrow B + c\overrightarrow C}{a+b+c}</math> and that that the vector of the foot of the bisector of <math>\angle BAC</math> on <math>\overline{BC}</math> is <math>\overrightarrow P = \frac{b\overrightarrow B + c\overrightarrow C}{b+c}</math>, where <math>a=BC,</math> <math>b=AC,</math> and <math>c=AB</math>. | ||
+ | |||
+ | Let point <math>A</math> be the origin of the coordinate plane. Then, <math>\overrightarrow A</math> is the zero vector, so we can simplify our expression for <math>\overrightarrow I</math> to <math>\frac{b\overrightarrow B + c\overrightarrow C}{a+b+c}</math>. Now, note that the vector components of <math>\overrightarrow I</math> and <math>\overrightarrow P</math> are the same, but they are multiplied by different scalars. Thus, the ratio of these scalars is the ratio of these vectors' magnitudes. Thus, we have <math>\frac{|\overrightarrow I|}{|\overrightarrow P|}=\frac{\tfrac1{a+b+c}}{\tfrac1{b+c}}=\frac{b+c}{a+b+c}=\frac{43}{63}</math>. | ||
+ | |||
+ | Let <math>D \in \overline{AB}</math> and <math>E \in \overline{AC}</math>. Because <math>\triangle AIE \sim \triangle APC</math>, we have <math>\frac{AI}{AP}=\frac{AE}{AC}</math>. Further, because <math>\triangle ADE \sim \triangle ABC</math>, we have <math>\frac{AE}{AC}=\frac{DE}{BC}</math>. Thus, by transitivity, <math>\frac{AI}{AP}=\frac{DE}{BC}</math>. We know that <math>\frac{AI}{AP}=\frac{43}{63}</math>, so <math>DE=\frac{AI}{AD}\cdot BC = \frac{43}{63}\cdot 20 = \frac{860}{63}</math>. | ||
+ | |||
+ | Thus, our answer is <math>860+63=\boxed{923}</math>. | ||
== See also == | == See also == |
Latest revision as of 05:57, 30 September 2024
Problem
Triangle has
,
and
. Points
and
are located on
and
, respectively, such that
is parallel to
and contains the center of the inscribed circle of triangle
. Then
, where
and
are relatively prime positive integers. Find
.
Contents
Solution 1
![[asy] pointpen = black; pathpen = black+linewidth(0.7); pair B=(0,0), C=(20,0), A=IP(CR(B,21),CR(C,22)), I=incenter(A,B,C), D=IP((0,I.y)--(20,I.y),A--B), E=IP((0,I.y)--(20,I.y),A--C); D(MP("A",A,N)--MP("B",B)--MP("C",C)--cycle); D(MP("I",I,NE)); D(MP("E",E,NE)--MP("D",D,NW)); // D((A.x,0)--A,linetype("4 4")+linewidth(0.7)); D((I.x,0)--I,linetype("4 4")+linewidth(0.7)); D(rightanglemark(B,(A.x,0),A,30)); D(B--I--C); MP("20",(B+C)/2); MP("21",(A+B)/2,NW); MP("22",(A+C)/2,NE); [/asy]](http://latex.artofproblemsolving.com/a/e/4/ae47e3711da65c309f6b7dc3c0e55287b8c8a5fc.png)
Let be the incenter of
, so that
and
are angle bisectors of
and
respectively. Then,
so
is isosceles, and similarly
is isosceles. It follows that
, so the perimeter of
is
. Hence, the ratio of the perimeters of
and
is
, which is the scale factor between the two similar triangles, and thus
. Thus,
.
Solution 2
![[asy] pointpen = black; pathpen = black+linewidth(0.7); pair B=(0,0), C=(20,0), A=IP(CR(B,21),CR(C,22)), I=incenter(A,B,C), D=IP((0,I.y)--(20,I.y),A--B), E=IP((0,I.y)--(20,I.y),A--C); D(MP("A",A,N)--MP("B",B)--MP("C",C)--cycle); D(incircle(A,B,C)); D(MP("I",I,NE)); D(MP("E",E,NE)--MP("D",D,NW)); D((A.x,0)--A,linetype("4 4")+linewidth(0.7)); D((I.x,0)--I,linetype("4 4")+linewidth(0.7)); D(rightanglemark(B,(A.x,0),A,30)); MP("20",(B+C)/2); MP("21",(A+B)/2,NW); MP("22",(A+C)/2,NE); [/asy]](http://latex.artofproblemsolving.com/3/0/8/308015d62aeb9917bd2a032c366423e1e0529c1f.png)
The semiperimeter of is
. By Heron's formula, the area of the whole triangle is
. Using the formula
, we find that the inradius is
. Since
, the ratio of the heights of triangles
and
is equal to the ratio between sides
and
. From
, we find
. Thus, we have
![$\frac{h_{ADE}}{h_{ABC}} = \frac{h_{ABC}-r}{h_{ABC}} = \frac{21\sqrt{1311}/40-\sqrt{1311}/6}{21\sqrt{1311}/40}=\frac{DE}{20}.$](http://latex.artofproblemsolving.com/c/7/a/c7ada10f62e3db0133421cd545a87b5575997be9.png)
Solving for gives
so the answer is
.
Or we have the area of the triangle as .
Using the ratio of heights to ratio of bases of
and
from that it is easy to deduce that
.
Solution 3 (mass points)
![[asy] pointpen = black; pathpen = black+linewidth(0.7); pen d = linewidth(0.7) + linetype("4 4"); pair B=(0,0), C=(20,0), A=IP(CR(B,21),CR(C,22)), I=incenter(A,B,C), D=IP((0,I.y)--(20,I.y),A--B), E=IP((0,I.y)--(20,I.y),A--C); D(MP("A",A,N)--MP("B",B)--MP("C",C)--cycle); D(incircle(A,B,C)); D(MP("P",I,(1,2))); D(MP("E",E,NE)--MP("D",D,NW)); MP("20",(B+C)/2); MP("21",(A+B)/2,NW); MP("22",(A+C)/2,NE); /* construct angle bisectors */ path anglebisector (pair X, pair Y, pair Z, path K) { return Y -- IP(Y -- Y + 30 * (bisectorpoint(X,Y,Z)-Y) , K); } D(anglebisector(C,A,B,B--C), d); D(anglebisector(B,C,A,A--B),d); D(anglebisector(C,B,A,A--C),d); [/asy]](http://latex.artofproblemsolving.com/7/c/7/7c752cc350ded25b2c947d336d77bc6ccf240f96.png)
Let be the incenter; then it is be the intersection of all three angle bisectors. Draw the bisector
to where it intersects
, and name the intersection
.
Using the angle bisector theorem, we know the ratio is
, thus we shall assign a weight of
to point
and a weight of
to point
, giving
a weight of
. In the same manner, using another bisector, we find that
has a weight of
. So, now we know
has a weight of
, and the ratio of
is
. Therefore, the smaller similar triangle
is
the height of the original triangle
. So,
is
the size of
. Multiplying this ratio by the length of
, we find
is
. Therefore,
.
Solution 4 (Faster)
More directly than Solution 2, we have
Solution 5
Diagram borrowed from Solution 3.
![[asy] pointpen = black; pathpen = black+linewidth(0.7); pen d = linewidth(0.7) + linetype("4 4"); pair B=(0,0), C=(20,0), A=IP(CR(B,21),CR(C,22)), I=incenter(A,B,C), D=IP((0,I.y)--(20,I.y),A--B), E=IP((0,I.y)--(20,I.y),A--C); D(MP("A",A,N)--MP("B",B)--MP("C",C)--cycle); D(incircle(A,B,C)); D(MP("P",I,(1,2))); D(MP("E",E,NE)--MP("D",D,NW)); MP("20",(B+C)/2); MP("21",(A+B)/2,NW); MP("22",(A+C)/2,NE); /* construct angle bisectors */ path anglebisector (pair X, pair Y, pair Z, path K) { return Y -- IP(Y -- Y + 30 * (bisectorpoint(X,Y,Z)-Y) , K); } D(anglebisector(C,A,B,B--C), d); D(anglebisector(C,B,A,A--C),d); [/asy]](http://latex.artofproblemsolving.com/8/a/7/8a737cd3a7bc5d89bf1865f77a48dfdfe147b5d9.png)
Let the angle bisector of intersects
at
.
Applying the Angle Bisector Theorem on we have
Since
is the angle bisector of
, we can once again apply the Angle Bisector Theorem on
which gives
Since
we have
Solving gets
. Thus
.
~ Nafer
Solution 6
Let be the foot of the altitude from
to
and
be the foot of the altitude from
to
. Evidently,
where
is the inradius,
, and
is the semiperimeter. So,
Therefore, by similar triangles, we have
.
Solution 7
Label the point the angle bisector of
intersects
. First we find
and
. By the Angle Bisector Theorem,
and solving for each using the fact that
, we see that
and
.
Becauseis the angle bisector of
, we can simply calculate it using Stewarts,
Now we can calculate what is. Using the formula to find the distance from a vertex to the incenter,
.
Now because , we can find
by
. Dividing and simplifying, we see that
. So the answer is
~YBSuburbanTea
Solution 8 (vectors)
To solve this problem, we can use the fact that, in , the vector representation of the incenter is
and that that the vector of the foot of the bisector of
on
is
, where
and
.
Let point be the origin of the coordinate plane. Then,
is the zero vector, so we can simplify our expression for
to
. Now, note that the vector components of
and
are the same, but they are multiplied by different scalars. Thus, the ratio of these scalars is the ratio of these vectors' magnitudes. Thus, we have
.
Let and
. Because
, we have
. Further, because
, we have
. Thus, by transitivity,
. We know that
, so
.
Thus, our answer is .
See also
2001 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.