Difference between revisions of "1966 IMO Problems/Problem 2"

Line 35: Line 35:
  
 
From <math>\alpha < \beta</math> it follows that <math>a < b</math>.  So,
 
From <math>\alpha < \beta</math> it follows that <math>a < b</math>.  So,
 +
 +
<math>b \tan \beta = (a + b) \tan \frac{\alpha + \beta}{2} - a \tan \alpha >
 +
2a \tan \frac{\alpha + \beta}{2} - a \tan \alpha \ge
 +
a (2 \tan \left( \frac{\alpha}{2} + \frac{\pi}{4} \right) - \tan \alpha) =</math>
 +
 +
<math>2a \left( \frac{\tan \frac{\alpha}{2} + 1}{1 - \tan \frac{\alpha}{2}} -
 +
\frac{\tan \frac{\alpha}{2}}{1 - \tan^2 \frac{\alpha}{2}} \right) =
 +
2a \cdot \frac{\tan^2 \frac{\alpha}{2} + \tan \frac{\alpha}{2} + 1}
 +
{1 - \tan^2 \frac{\alpha}{2}} > 0</math>
 +
 +
because the numerator is <math>> 0</math> and the denominator is also <math>> 0</math>
 +
(because <math>\alpha < \frac{\pi}{2}</math> so <math>\tan \frac{\alpha}{2} < 1</math>).
 +
 +
It follows that <math>\tan \beta > 0</math>, so it can not be that
 +
<math>\beta \ge \frac{\pi}{2}</math>.
 +
 +
Now, we will prove that
 +
<math>(a + b) \tan \frac{\alpha + \beta}{2} = a \tan \alpha + b \tan \beta</math>
 +
implies <math>\alpha = \beta</math>.
 +
  
  

Revision as of 00:36, 29 September 2024

Let $a$, $b$, and $c$ be the lengths of the sides of a triangle, and $\alpha,\beta,\gamma$ respectively, the angles opposite these sides. Prove that if

\[a+b=\tan{\frac{\gamma}{2}}(a\tan{\alpha}+b\tan{\beta}),\]

the triangle is isosceles.


Solution

We'll prove that the triangle is isosceles with $a=b$. We'll prove that $a=b$. Assume by way of contradiction WLOG that $a>b$. First notice that as $\gamma = \pi -\alpha-\beta$ then and the identity $\tan\left(\frac \pi 2 - x \right)=\cot x$ our equation becomes: \[a+b=\cot \frac{\alpha +\beta}{2}\left(a\tan \alpha + b\tan \beta \right)\]\[\iff a\tan\frac{\alpha +\beta}{2}+b\tan \frac{\alpha +\beta}{2}=a\tan \alpha + b\tan \beta\] \[\iff a\left(\tan \alpha -\tan \frac{\alpha +\beta}{2}\right)+b\left(\tan \beta -\tan \frac{\alpha +\beta}{2}  \right)=0\] Using the identity $\tan (A-B)=\frac {\tan A-\tan B}{1+\tan A\tan B}$ $\iff \tan A-\tan B=\tan(A-B)(1+\tan A\tan B)$ and inserting this into the above equation we get: \[\iff a\tan \frac{\alpha -\beta}{2}\left(1+\tan \alpha \tan \frac{\alpha +\beta}{2}\right)+b\tan \frac{\beta -\alpha}{2}\left(1+\tan \beta \tan \frac{\alpha +\beta}{2} \right)=0\] \[\underbrace{\iff}_{\tan -A=-\tan A}a\tan \frac{\alpha -\beta}{2}\left(1+\tan \alpha \tan \frac{\alpha +\beta}{2}\right)-b\tan \frac{\alpha -\beta}{2}\left(1+\tan \beta \tan \frac{\alpha +\beta}{2} \right)=0\] \[\iff \tan \frac{\alpha -\beta}{2}\left(a-b+\tan \frac{\alpha +\beta}{2}(a\tan\alpha -b\tan \beta) \right)=0\] Now, since $a>b$ and the definitions of $a,b,\alpha,\beta$ being part of the definition of a triangle, $\alpha >\beta$. Now, $\pi >\alpha -\beta >0$ (as $\alpha+\beta +\gamma = \pi$ and the angles are positive), $\tan \frac{\alpha -\beta}{2}\neq 0$, and furthermore, $\tan \frac{\alpha+\beta}{2}>0$. By all the above, \[\left(a-b+\tan \frac{\alpha +\beta}{2}(a\tan\alpha -b\tan \beta) \right)>0\] Which contradicts our assumption, thus $a\leq b$. By the symmetry of the condition, using the same arguments, $a\geq b$. Hence $a=b$.


Solution 2

First, we'll prove that both $\alpha$ and $\beta$ are acute. At least one of them has to be acute because these are angles of a triangle. We can assume that $\alpha$ is acute. We want to show that $\beta$ is acute as well. For a proof by contradiction, assume $\beta \ge \frac{\pi}{2}$.

From the hypothesis, it follows that $(a + b) \tan \frac{\alpha + \beta}{2} = a \tan \alpha + b \tan \beta$.

From $\alpha < \beta$ it follows that $a < b$. So,

$b \tan \beta = (a + b) \tan \frac{\alpha + \beta}{2} - a \tan \alpha > 2a \tan \frac{\alpha + \beta}{2} - a \tan \alpha \ge a (2 \tan \left( \frac{\alpha}{2} + \frac{\pi}{4} \right) - \tan \alpha) =$

$2a \left( \frac{\tan \frac{\alpha}{2} + 1}{1 - \tan \frac{\alpha}{2}} - \frac{\tan \frac{\alpha}{2}}{1 - \tan^2 \frac{\alpha}{2}} \right) = 2a \cdot \frac{\tan^2 \frac{\alpha}{2} + \tan \frac{\alpha}{2} + 1} {1 - \tan^2 \frac{\alpha}{2}} > 0$

because the numerator is $> 0$ and the denominator is also $> 0$ (because $\alpha < \frac{\pi}{2}$ so $\tan \frac{\alpha}{2} < 1$).

It follows that $\tan \beta > 0$, so it can not be that $\beta \ge \frac{\pi}{2}$.

Now, we will prove that $(a + b) \tan \frac{\alpha + \beta}{2} = a \tan \alpha + b \tan \beta$ implies $\alpha = \beta$.




(Solution by pf02, September 2024)

TO BE CONTINUED. SAVING MID WAY SO I DON'T LOOSE WORK DONE SO FAR.


See Also

1966 IMO (Problems) • Resources
Preceded by
Problem 1
1 2 3 4 5 6 Followed by
Problem 3
All IMO Problems and Solutions