Difference between revisions of "1954 AHSME Problems/Problem 34"

 
Line 7: Line 7:
 
== Solution ==
 
== Solution ==
  
<math>\frac{333333333}{10^8}-\frac{1}{3}\implies \frac{3\cdot 10^7+3\cdot 10^6+\dots+3\cdot 10^0}{10^8}-\frac{1}{3}\implies\frac{3(10^{8}-1)}{9\cdot 10^{8}}-\frac{1}{3}\implies\frac{10^8-1}{3\cdot 10^8}-\frac{1}{3}\implies\frac{10^8}{3\cdot 10^8}-\frac{1}{3\cdot 10^8}-\frac{1}{3}\implies\frac{-1}{3\cdot 10^8}</math>
+
<math>\frac{33333333}{10^8}-\frac{1}{3}\implies \frac{3\cdot 10^7+3\cdot 10^6+\dots+3\cdot 10^0}{10^8}-\frac{1}{3}\implies\frac{3(10^{8}-1)}{9\cdot 10^{8}}-\frac{1}{3}\implies\frac{10^8-1}{3\cdot 10^8}-\frac{1}{3}\implies\frac{10^8}{3\cdot 10^8}-\frac{1}{3\cdot 10^8}-\frac{1}{3}\implies\frac{-1}{3\cdot 10^8}</math>
Because we did <math>.333333333-\frac{1}{3}</math>, it is <math>\fbox{B}</math>
+
Because we did <math>.33333333-\frac{1}{3}</math>, it is <math>\fbox{D}</math>
  
 
==See Also==
 
==See Also==

Latest revision as of 16:38, 23 September 2024

Problem 34

The fraction $\frac{1}{3}$:

$\textbf{(A)}\ \text{equals 0.33333333}\qquad\textbf{(B)}\ \text{is less than 0.33333333 by }\frac{1}{3\cdot 10^8}\\ \textbf{(C)}\ \text{is less than 0.33333333 by }\frac{1}{3\cdot 10^9}\\ \textbf{(D)}\ \text{is greater than 0.33333333 by }\frac{1}{3\cdot 10^8}\\ \textbf{(E)}\ \text{is greater than 0.33333333 by }\frac{1}{3\cdot 10^9}$

Solution

$\frac{33333333}{10^8}-\frac{1}{3}\implies \frac{3\cdot 10^7+3\cdot 10^6+\dots+3\cdot 10^0}{10^8}-\frac{1}{3}\implies\frac{3(10^{8}-1)}{9\cdot 10^{8}}-\frac{1}{3}\implies\frac{10^8-1}{3\cdot 10^8}-\frac{1}{3}\implies\frac{10^8}{3\cdot 10^8}-\frac{1}{3\cdot 10^8}-\frac{1}{3}\implies\frac{-1}{3\cdot 10^8}$ Because we did $.33333333-\frac{1}{3}$, it is $\fbox{D}$

See Also

1954 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 33
Followed by
Problem 35
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png