Difference between revisions of "2002 AMC 12B Problems/Problem 12"

(s)
(No difference)

Revision as of 16:30, 18 January 2008

Problem

For how many integers $n$ is $\dfrac n{20-n}$ the square of an integer?

$\mathrm{(A)}\ 1 \qquad\mathrm{(B)}\ 2 \qquad\mathrm{(C)}\ 3 \qquad\mathrm{(D)}\ 4 \qquad\mathrm{(E)}\ 10$

Solution

Let $x^2 = \frac{n}{20-n}$, with $x \ge 0$ (note that the solutions $x < 0$ do not give any additional solutions for $n$). Then rewriting, $n = \frac{20x^2}{x^2 + 1}$. Since $\text{gcd}(x^2, x^2 + 1) = 1$, it follows that $x^2 + 1$ divides $20$. Listing the factors of $20$, we find that $x = 0, 1, 2 , 3$ are the only $4 \Rightarrow \mathrm{(D)}$ solutions (respectively yielding $n = 0, 10, 16, 18$).

See also

2002 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions