Difference between revisions of "2013 Mock AIME I Problems/Problem 5"

(created solution page)
 
(Solution)
Line 3: Line 3:
  
 
== Solution ==
 
== Solution ==
 +
 +
<asy>
 +
 +
import geometry;
 +
 +
// Defining Points
 +
point O = origin;
 +
point B = (1,0);
 +
point A = dir(115.583);
 +
point C = dir(-115.583);
 +
point D = dir(-165.638);
 +
point M;
 +
 +
// Circle
 +
draw(circle(O, 1));
 +
 +
// Quadrilateral and Diagonals
 +
draw(A--B--C--D--cycle);
 +
draw(A--C);
 +
draw(B--D);
 +
 +
// Defining M
 +
pair[] m = intersectionpoints((A--C),(B--D));
 +
M = m[0];
 +
 +
// Labelling Points
 +
dot(A);
 +
label("A",A,NW);
 +
dot(B);
 +
label("B",B,E);
 +
dot(C);
 +
label("C",C,SW);
 +
dot(D);
 +
label("D",D,WSW);
 +
dot(M);
 +
label("M",M,NE);
 +
 +
// Length Labels
 +
label("$3$", midpoint(D--M), NNW);
 +
label("$8$", midpoint(M--B), NNW);
 +
label("$6$", midpoint(A--M), E);
 +
label("$4$", midpoint(C--M), E);
 +
label("$2x$", midpoint(B--C), SE);
 +
label("$x$", midpoint(C--D), NE);
 +
 +
</asy>
 +
 
<math>\boxed{037}</math>.
 
<math>\boxed{037}</math>.
  

Revision as of 10:11, 30 July 2024

Problem

In quadrilateral $ABCD$, $AC\cap BD=M$. Also, $MA=6, MB=8, MC=4, MD=3$, and $BC=2CD$. The perimeter of $ABCD$ can be expressed in the form $\frac{p\sqrt{q}}{r}$ where $p$ and $r$ are relatively prime, and $q$ is not divisible by the square of any prime number. Find $p+q+r$.

Solution

[asy]  import geometry;  // Defining Points point O = origin; point B = (1,0); point A = dir(115.583); point C = dir(-115.583); point D = dir(-165.638); point M;  // Circle draw(circle(O, 1));  // Quadrilateral and Diagonals draw(A--B--C--D--cycle); draw(A--C); draw(B--D);  // Defining M pair[] m = intersectionpoints((A--C),(B--D)); M = m[0];  // Labelling Points dot(A); label("A",A,NW); dot(B); label("B",B,E); dot(C); label("C",C,SW); dot(D); label("D",D,WSW); dot(M); label("M",M,NE);  // Length Labels label("$3$", midpoint(D--M), NNW); label("$8$", midpoint(M--B), NNW); label("$6$", midpoint(A--M), E); label("$4$", midpoint(C--M), E); label("$2x$", midpoint(B--C), SE); label("$x$", midpoint(C--D), NE);  [/asy]

$\boxed{037}$.

See also