Difference between revisions of "2002 AMC 10P Problems/Problem 14"
(→Solution 1) |
|||
Line 27: | Line 27: | ||
Thus, our answer is <math>\boxed{\textbf{(A) } \frac{1}{4}}.</math> | Thus, our answer is <math>\boxed{\textbf{(A) } \frac{1}{4}}.</math> | ||
+ | |||
+ | ==Solution 2== | ||
+ | If we draw a diagram as explained by the prompt, <math>\angle EJD = 360^{\circ}-90^{\circ}-90^{\circ}-60^{\circ} = 120^{\circ}</math> as <math>\angle IEJ</math> and <math>\angle JDI</math> are both <math>90^{\circ}</math> because they are angles of the squares, and <math>\angle EID=60^{\circ}</math> given by the question. Similar to solution 1, if we draw <math>EX</math> and <math>EY</math> perpendicular to <math>AD</math> and <math>CD</math> respectively, square <math>EXDY</math> with a side length of <math>\frac{1}{2}</math> will be formed. Looking at <math>\triangle JXE</math>, we will notice <math>\angle EJX = 180^{\circ}-120^{\circ}=60^{\circ}</math>. Therefore <math>\triangle EYI</math> and <math>\triangle EXJ</math> are congruent by <math>A.A.S.</math> as they both have a <math>90^{\circ}</math> and a <math>60^{\circ}</math> angle and <math>EX=EY</math>. Thus, the area of quadrilateral <math>EIDJ</math> is the same as the area of square <math>EXDY</math>, which equals <math>\frac{1}{2} \times \frac{1}{2} = \boxed{\textbf{(A) } \frac{1}{4}}.</math> | ||
== See also == | == See also == | ||
{{AMC10 box|year=2002|ab=P|num-b=13|num-a=15}} | {{AMC10 box|year=2002|ab=P|num-b=13|num-a=15}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 18:16, 18 July 2024
Contents
Problem 14
The vertex of a square
is at the center of square
The length of a side of
is
and the length of a side of
is
Side
intersects
at
and
intersects
at
If angle
the area of quadrilateral
is
Solution 1
Draw a diagram. Split quadrilateral into
and
Let the perpendicular from point
intersect
at
, and let the perpendicular from point
intersect
at
We know
because
since
is a square,
as given, and
so
Since
is at the center of square
,
By
Additionally, we know
so
and we know
so
From here, we can sum the areas of
and
to get the area of quadrilateral
Therefore,
\begin{align*} [EIDJ]&=[EIJ]+[JDI] \\ &=\frac{1}{2}(\frac{1}{\sqrt{3}})(\frac{1}{\sqrt{3}}) + \frac{1}{2} (\frac{1}{2}-\frac{1}{2 \sqrt{3}}) (\frac{1}{2}+\frac{1}{2 \sqrt{3}}) \\ &=\frac{1}{2}(\frac{1}{3})+\frac{1}{2}(\frac{1}{4}-\frac{1}{12}) \\ &=\frac{1}{6}+\frac{1}{12} \\ &=\frac{1}{4} \\ \end{align*}
Thus, our answer is
Solution 2
If we draw a diagram as explained by the prompt, as
and
are both
because they are angles of the squares, and
given by the question. Similar to solution 1, if we draw
and
perpendicular to
and
respectively, square
with a side length of
will be formed. Looking at
, we will notice
. Therefore
and
are congruent by
as they both have a
and a
angle and
. Thus, the area of quadrilateral
is the same as the area of square
, which equals
See also
2002 AMC 10P (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.